【题目】如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形ADBC的面积.
【答案】(1)见解析;(2)S平行四边形ADBC=.
【解析】
(1)在Rt△ABC中,E为AB的中点,则CE=AB,BE=AB,得到∠BCE=∠EBC=60°.由△AEF≌△BEC,得∠AFE=∠BCE=60°.又∠D=60°,得∠AFE
=∠D=60度.所以FC∥BD,又因为∠BAD=∠ABC=60°,所以AD∥BC,即FD//BC,则四边形BCFD是平行四边形.
(2)在Rt△ABC中,求出BC,AC即可解决问题;
解:(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°,在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°,∵E为AB的中点,∴AE=BE,又∵∠AEF=∠BEC,∴△AEF≌△BEC,在△ABC中,∠ACB=90°,E为AB的中点,∴CE=AB,BE=AB,∴CE=AE,∴∠EAC=∠ECA=30°,∴∠BCE=∠EBC=60°,又∵△AEF≌△BEC,∴∠AFE=∠BCE=60°,又∵∠D=60°,∴∠AFE=∠D=60°,∴FC∥BD,又∵∠BAD=∠ABC=60°,∴AD∥BC,即FD∥BC,∴四边形BCFD是平行四边形;
(2)解:在Rt△ABC中,∵∠BAC=30°,AB=6,∴BC=AF=3,AC=,∴S平行四边形BCFD=3×=,S△ACF=×3×=,S平行四边形ADBC=.
科目:初中数学 来源: 题型:
【题目】如图,∠A=∠B=30°,P为AB中点,线段MV绕点P旋转,且M为射线AC上(不与点d重合)的任意一点,且N为射线BD上(不与点B重合)的一点,设∠BPN=α.
(1)求证:△APM≌△BPN;
(2)当MN=2BN时,求α的度数;
(3)若AB=4,60°≤α≤90°,直接写出△BPN的外心运动路线的长度。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将抛物线P1:y1=x2﹣3右移m个单位长度得到新抛物线P2:y2=a(x+h)2+k,抛物线P1与x轴交于A、B两点,与y轴交于点C,抛物线P2与x轴交于A1,B1两点,与y轴交于点C1.
(1)当m=1时,a= ,h= ,k= ;
(2)在(1)的条件下,当y1<y2<0时,求x的取值范围;
(3)如图2,过点C1作y轴的垂线,分别交抛物线P1,P2于D、E两点,当四边形A1DEB是矩形时,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,直线与x轴交于C点,与y轴交于点E,点A在x轴的负半轴,以A点为圆心,AO为半径的圆与直线的CE相切于点F,交x轴负半轴于另一点B.
(1)求的半径;
(2)连BF、AE,则BF与AE之间有什么位置关系?写出结论并证明.
(3)如图②,以AC为直径作交y轴于M,N两点,点P是弧MC上任意一点,点Q是弧PM的中点,连CP,NQ,延长CP,NQ交于D点,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线与轴交于点,与轴交于点抛物线经过点、.
(1)求点的坐标和抛物线的解析式.
(2)为轴上一个动点,过点垂直于轴的直线与直线和抛物线分别交于点、.
①点在线段上运动,若以、、为顶点的三角形与相似,求点的坐标;
②点在轴上自由运动,若三个点、、中恰有一点是其他两点所连线段的中点(三点重合除外),则称、、三点为“共谐点”.请直接写出使得、、三点成为“共谐点”的的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为( )
A. 20 B. 24 C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B,
(1)求证:AD是⊙O的切线.
(2)若BC=8,tanB=,求⊙O 的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,中,为内一点,将绕点按逆时针方向旋转角得到,点的对应点分别为点,且三点在同一直线上.
(1)填空: (用含的代数式表示);
(2)如图2,若,请补全图形,再过点作于点,然后探究线段之间的数量关系,并证明你的结论;
(3)若,且点满足,直接写出点到的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某镇组织20辆汽车装运完三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要装运,每辆汽车只能装运用一种脐橙,且必须装满。根据下表提供的信息,解答以下问题:
从A,B两地运往甲,乙两地的费用如下表:
脐橙品种 | A | B | C |
每辆汽车运载量(吨) | 6 | 5 | 4 |
每吨脐橙获利(百元) | 12 | 16 | 10 |
(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?
(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com