A. | 5$\sqrt{5}$ | B. | 10$\sqrt{5}$ | C. | 10$\sqrt{3}$ | D. | 15$\sqrt{3}$ |
分析 作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,由对称结合矩形的性质可知:E′G′=AB=10、GG′=AD=5,利用勾股定理即可求出E′G的长度,进而可得出四边形EFGH周长的最小值.
解答 解:作点E关于BC的对称点E′,连接E′G交BC于点F,此时四边形EFGH周长取最小值,过点G作GG′⊥AB于点G′,如图所示.
∵AE=CG,BE=BE′,
∴E′G′=AB=10,
∵GG′=AD=5,
∴E′G=$\sqrt{E′G{′}^{2}+GG{′}^{2}}$=5$\sqrt{5}$,
∴C四边形EFGH=2E′G=10$\sqrt{5}$.
故选B.
点评 本题考查了轴对称中的最短路线问题以及矩形的性质,找出四边形EFGH周长取最小值时点E、F、G之间为位置关系是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0.11×108 | B. | 1.1×109 | C. | 1.1×1010 | D. | 11×108 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 第一、三象限 | B. | 第一、二象限 | C. | 第二、四象限 | D. | 第二、三象限 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com