精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=2,AC=
2
,以A为圆心,1为半径的圆与边BC相切,则BC的长是______.
如图,设线段BC与⊙O相切于点D,连接AD.
∵BC是⊙O的切线,D是切点,
∴AD⊥BC,AD=1.
∴在Rt△ABD中,AB=2,AD=1,∠ADB=90°,BD=
AB2-AD2
=
22-12
=
3

在Rt△ACD中,AC=
2
,AD=1,∠ADC=90°,CD=
AC2-AD2
=
(
2
)2-12
=1.
∴BC=BD+CD=1+
3

故答案是:1+
3

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EFBC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:
①EF是△ABC的中位线.
②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;
③设OD=m,AE+AF=2n,则S△AEF=mn;
④∠BOC=90°+
1
2
∠A;
其中正确的结论是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BCOA,劣弧
BC
的弧长为______.(结果保留π)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,AB是⊙O的直径,P是AB上的一点(与A、B不重合),QP⊥AB,垂足为P,直线QA交⊙O于C点,过C点作⊙O的切线交直线QP于点D.则△CDQ是等腰三角形.
对上述命题证明如下:
证明:连接OC
∵OA=OC
∴∠A=∠1
∵CD切O于C点
∴∠OCD=90°
∴∠1+∠2=90°
∴∠A+∠2=90°
在Rt△QPA中,∠QPA=90°
∴∠A+∠Q=90°
∴∠2=∠Q
∴DQ=DC
即CDQ是等腰三角形.
问题:对上述命题,当点P在BA的延长线上时,其他条件不变,如图所示,结论“△CDQ是等腰三角形”还成立吗?若成立,请给予证明;若不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(l01l•瑶海区一模)如图,在△七B5中,七B=七5,以七B为直径的⊙O交B5于点D,过点D作EF⊥七5于点E,交七B的延长线于点F.
(1)求证:EF是⊙O的切线;
(l)当七B=5,B5=二时,求DE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形ABCD中,AB=8,BC=6,如果圆A是以点A为圆心,9为半径的圆,那么下列判断正确的是(  )
A.点B、C均在圆A外
B.点B在圆A外、点C在圆A内
C.点B在圆A内、点C在圆A外
D.点B、C均在圆A内

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

矩形的两邻边长分别为2.5和5,若以较长一边为直径作半圆,则矩形的各边与半圆相切的线段最多有(  )
A.0条B.1条C.2条D.3条

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB是⊙O的直径,直线AD与⊙O相切于点A,点C在⊙O着,∠DAC=∠ACD,直线DC与AB的延长线交于点E.AF⊥ED于点F,交⊙O于点G.
(k)求证:DE是⊙O的切线;
(2)已知⊙O的半径是6cm,EC=xcm,求GF的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB分别切⊙O于A、B,PA=10cm,C是劣弧AB上的点(不与点A、B重合),过点C的切线分别交PA、PB于点E、F.则△PEF的周长为______cm.

查看答案和解析>>

同步练习册答案