精英家教网 > 初中数学 > 题目详情
如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作△BED中BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?
分析:(1)利用三角形内角与外角的关系可直接得到答案;
(2)根据过直线外一点作已知直线的垂线的方法作图即可;
(3)根据中线的性质可得△BED的面积,再根据面积公式可得答案.
解答:解:(1)∵∠ABE=15°,∠BAD=40°,
∴∠BED=15°+40°=55°;

(2)如图所示:

(3)∵AD为△ABC的中线,
∴S△BAD=
1
2
S△ACB
∵BE为三角形ABD中线,
∴S△BED=
1
2
S△BAD
∵△ABC的面积为60,
∴S△BED=15,
∵BD=5,
∴EF=6.
点评:此题主要考查了三角形的中线,以及三角形的面积,三角形的内角与外角的关系,关键是掌握三角形的中线可以平分三角形的面积.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,∠ADC=45°,把△ADC沿AD对折,点C落在点C′的位置,BC=4,求BC′的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD为△ABC的中线,BE为△ABD的中线.
(1)在△BED中作BD边上的高,垂足为F;
(2)若△ABC的面积为20,BD=5.
①△ABD的面积为
 

②求△BDE中BD边上的高EF的长;
(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为三角形ABD中线,
(1)∠ABE=15°,∠BAD=35°,求∠BED的度数;
(2)在△BED中作BD边上的高;
(3)若△ABC的面积为60,BD=5,则点E到BC边的距离为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=26°,求∠BED的度数;
(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD为△ABC的中线,BE为△ABD的中线.
(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;
(2)作图:在△BED中作BD边上的高,垂足为F;
(3)若△ABC的面积为60,BD=6,则△BDE中BD边上的高为多少?(请写出解题的必要过程)
(4)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=m,S△COD=n,求S△EOD(用含m、n的代数式表示)

查看答案和解析>>

同步练习册答案