精英家教网 > 初中数学 > 题目详情

【题目】如图,直线的解析表达式为,且轴交于点.直线经过点,直线交于点

1)求点的坐标;

2)求直线的解析表达式;

3)在轴上求作一点,使的和最小,直接写出的坐标.

【答案】1D10);(2yx6;(30.

【解析】

1)已知l1的解析式,令y0求出x的值即可;

2)设l2的解析式为ykxb,代入AB坐标求出kb的值即可;

3)作点B关于x轴的对称点B’ 连接B’Cx轴于M,则点M即为所求,联立解析式可求出点C坐标,然后求出直线B’C的解析式,令y0求出x的值即可.

解:(1)由y3x3,令y0,得3x30

解得:x1

D10);

2)设直线l2的表达式为ykxb

由图象知:A40),B3),代入表达式ykxb

,解得:

∴直线l2的解析表达式为yx6

3)作点B关于x轴的对称点B’,则B’的坐标的为(3),连接B’Cx轴于M,则点M即为所求,

联立,解得:

C2,-3),

设直线B’C的解析式为:y=mx+n,代入B’3),C2,-3),

,解得:

∴直线B’C的解析式为:yx12

y0,即x120

解得:

的坐标为(0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,A(1,0),C(0,2),双曲线y=(0<k<2)的图象分别交AB,CB于点E,F,连接OE,OF,EF,SOEF=2SBEF,则k值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:在△ABC中,∠C90°AD是∠BAC的平分线,DEABEFAC上,BDDF

1)证明:CFEB

2)证明:ABAF+2EB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1所示,在A,B两地之间有汽车站C站,客车由C站驶往A地,到达A地后立即原速驶往B地,货车由B地驶往A地,两车同时出发,匀速行驶.图2是客车、货车离C站的距离y(千米)与行驶时间x(小时)之间的函数关系图象,请结合图象信息解答下列问题:

(1)A,B两地间的距离是   千米;请直接在图2中的括号内填上正确数字;

(2)求货车由B地驶往A地过程中,y与x之间的函数关系式,并写出自变量x的取值范围;

(3)客、货两车出发多长时间,距各自出发地的距离相等?直接写出答案;

(4)客、货两车出发多长时间,相距500千米?直接写出答案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,且abc0)与直线l都经过y轴上的同一点,且抛物线L的顶点在直线l上,则称此抛物线L与直线l具有“一带一路”关系,并且将直线l叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”.

(1)若“路线”l的表达式为y=﹣x+2,它的“带线”L的顶点在反比例函数y=的图象上,求“带线”L的表达式;

(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有“一带一路”关系,求m,n的值;

(3)设(2)中的“带线”L与它的“路线”l在y轴上的交点为A.已知点P为“带线”L上的点,当以点P为圆心的圆与“路线”l相切于点A时,求出点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,点P是对角线AC上的一点,PE⊥ABPF⊥AD,垂足分别为EF,且PE=PF,平行四边形ABCD是菱形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校m名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:

根据统计图提供的信息,解答下列问题:

1m   n   ,并请根据以上信息补全条形统计图;

2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是   度;

3)根据抽样调查的结果,请你估计该校900名学生中有多少学生最喜欢科普类图书.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.

(1)求证:BO=DO;

(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:正方形ABCF中,EBC中点,点DCF上,AB=4CD=1

1)判断△AED的形状,并证明;

2ACDE于点NMAE上,且满足BM2ME2=EN2CN2,求证:BMAC

3)若△APE是以AE为斜边的等腰直角三角形,直接写出BP的长.

查看答案和解析>>

同步练习册答案