精英家教网 > 初中数学 > 题目详情
(2013•广州)若代数式
x
x-1
有意义,则实数x的取值范围是(  )
分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.
解答:解:根据题意得:
x≥0
x-1≠0

解得:x≥0且x≠1.
故选D.
点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•广州)若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)如图,在东西方向的海岸线MN上有A、B两艘船,均收到已触礁搁浅的船P的求救信号,已知船P在船A的北偏东58°方向,船P在船B的北偏西35°方向,AP的距离为30海里.
(1)求船P到海岸线MN的距离(精确到0.1海里);
(2)若船A、船B分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P处.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(2,2),反比例函数y=
kx
(x>0,k≠0)的图象经过线段BC的中点D.
(1)求k的值;
(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的解析式并写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O上运动(不与点B重合),连接CD,且CD=OA.
(1)当OC=2
2
时(如图),求证:CD是⊙O的切线;
(2)当OC>2
2
时,CD所在直线于⊙O相交,设另一交点为E,连接AE.
①当D为CE中点时,求△ACE的周长;
②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AE•ED的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案