【题目】已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
【答案】(1)yx2﹣2x﹣3;(2)满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);(3)存在,P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).
【解析】
(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;
(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;
(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.
解:(1)∵抛物线的顶点为(1,﹣4),
∴设抛物线的解析式为y=a(x﹣1)2﹣4,
将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,
∴a=1,
∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;
(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,
令y=0,则x2﹣2x﹣3=0,
∴x=﹣1或x=3,
∴B(3,0),A(﹣1,0),
令x=0,则y=﹣3,
∴C(0,﹣3),
∴AC=,
设点E(0,m),则AE=,CE=|m+3|,
∵△ACE是等腰三角形,
∴①当AC=AE时,=,
∴m=3或m=﹣3(点C的纵坐标,舍去),
∴E(3,0),
②当AC=CE时,=|m+3|,
∴m=﹣3±,
∴E(0,﹣3+)或(0,﹣3﹣),
③当AE=CE时,=|m+3|,
∴m=﹣,
∴E(0,﹣),
即满足条件的点E的坐标为(0,3)、(0,﹣3+)、(0,﹣3﹣)、(0,﹣);
(3)如图,存在,∵D(1,﹣4),
∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,
∴点Q的纵坐标为4,
设Q(t,4),
将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,
∴t=1+2或t=1﹣2,
∴Q(1+2,4)或(1﹣2,4),
分别过点D,Q作x轴的垂线,垂足分别为F,G,
∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),
∴FB=PG=3﹣1=2,
∴点P的横坐标为(1+2)﹣2=﹣1+2或(1﹣2)﹣2=﹣1﹣2,
即P(﹣1+2,0)、Q(1+2,4)或P(﹣1﹣2,0)、Q(1﹣2,4).
科目:初中数学 来源: 题型:
【题目】人类的血型一般可分为A,B,AB,O型四种,宁波市中心血战2015年共有8万人无偿献血,血战统计人员由电脑随机选出20人,血型分别是:
O,A,O,B,O,A,A,AB,A,O,O,B,AB,B,O,A,O,B,O,A.
(1)请设计统计表分类统计这20人各类血型人数;
(2)若每位献血者平均献血200毫升,一年中宁波市各医院O型血用血量约为6×106毫米,请你估计2015年这8万人所献的O型血是否够用?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.
(1)求证:AD=CD.
(2)求证:DE为⊙O的切线.
(3)若∠C=60°,DE=,求⊙O半径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点在反比例函数上,轴于点,点在轴正半轴上,,、的长是方程的两个实数根,且,点是线段延长线上的一个动点,的外接圆与轴的另一个交点是.
(1)求点和点的坐标;
(2)求反比例函数的解析式;
(3)连接求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点O为坐标原点,抛物线的顶点是A(1,3),将OA绕点O逆时针旋转后得到OB,点B恰好在抛物线上,OB与抛物线的对称轴交于点C.
(1)求抛物线的解析式;
(2)P是线段AC上一动点,且不与点A,C重合,过点P作平行于x轴的直线,与的边分别交于M,N两点,将以直线MN为对称轴翻折,得到.
设点P的纵坐标为m.
①当在内部时,求m的取值范围;
②是否存在点P,使,若存在,求出满足m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,a≠0,c>0)的自变量x与函数值y的部分对应值如表:
x | … | ﹣1 | 0 | 1 | 2 | 3 | … |
y=ax2+bx+c | … | p | t | n | t | 0 | … |
有下列结论:①b>0;②关于x的方程ax2+bx+c=0的两个根是0和3;③p+2t<0;④m(am+b)≤﹣4a﹣c(m为任意实数).其中正确结论的个数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售A、B两种新型小家电,A型每台进价40元,售价50元,B型每台进价32元,售价40元,4月份售出A型40台,且销售这两种小家电共获利不少于800元.
(1)求4月份售出B型小家电至少多少台?
(2)经市场调查,5月份A型售价每降低1元,销量将增加10台;B型售价每降低1元,销量将在4月份最低销量的基础上增加15台.为尽可能让消费者获得实惠,商场计划5月份A、B两种小家电都降低相同价格,且希望销售这两种小家电共获利965元,则这两种小家电都应降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是平行四边形,//,且分别交对角线AC于点E,F,连接BE,DF.
(1)求证:AE=CF;
(2)若BE=DE,求证:四边形EBFD为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是( )
A.DC=DTB.AD=DTC.BD=BOD.2OC=5AC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com