精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=AC,过BC上一点D作BC的垂线,交BA的延长线于点P,交AC于点Q,试判断△APQ的形状,并证明你的结论.

答案:
解析:

  解:△APQ是等腰三角形.

  证明:因为AB=AC,所以∠B=∠C.

  因为PD⊥BC,所以∠PDB=∠PDC=90°.

  所以∠P+∠B=90°,∠DQC+∠C=90°.

  所以∠P=∠DQC.

  又因为∠DQC=∠AQP,所以∠AQP=∠P.

  所以△APQ是等腰三角形.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案