精英家教网 > 初中数学 > 题目详情
(11·十堰)如图,AB是半圆O的直径,点C为半径OB上一点,过点C作CD⊥AB交半圆O于点D,将△ACD沿AD折叠得到△AED,AE交半圆于点F,连接DF。
(1)求证:DE是半圆的切线;
(2)连接OD,当OC=BC时,判断四边形ODFA的形状,并证明你的结论。
证明:(1)如图,连接OD,

则OA=OD,∴∠OAD=∠ODA,△AED由△ACD对折得到,所以∠CDA=∠EDA,
又CD⊥AB,∴∠CAD+∠CDA=∠ODA+∠EDA=90°,D在半圆O上,
∴DE是半圆的切线。
(2)四边形ODFA是菱形。

在Rt△OCD中,∠ODC=30°,∴∠DOC=60°,
∵∠DOC=∠OAD+∠ODA,∴∠OAD=∠ODA=∠FAD=30°。
∴OD//AF,∠FAO=60°,又∵OF=OA,∴△FAO是等边三角形,∴OA=AF,∴OD=AF,
∴四边形ODFA是平行四边形,∵OA=OD,∴四边形ODFA是菱形.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC.若∠A=
36°,则∠C=    ▲  

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知扇形的圆心角为,半径为6,则扇形的弧长为        .(结果保留

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(2011•海南)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD=_____________

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·永州)(本题满分10分)如图,AB是半圆O的直径,点C是⊙O上一点
(不与A,B重合),连接AC,BC,过点O作OD∥AC交BC于点D,在OD的延长线上
取一点E,连接EB,使∠OEB=∠ABC.
⑴ 求证:BE是⊙O的切线;
⑵ 若OA=10,BC=16,求BE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,⊙O的半径为cm,
则弦CD的长为   
A.cmB.3cm
C.cmD.9cm

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2011•广州)如图1,⊙O中AB是直径,C是⊙O上一点,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,点D在线段AC上.
(1)证明:B、C、E三点共线;
(2)若M是线段BE的中点,N是线段AD的中点,证明:MN=OM;
(3)将△DCE绕点C逆时针旋转α(0°<α<90°)后,记为△D1CE1(图2),若M1是线段BE1的中点,N1是线段AD1的中点,M1N1=OM1是否成立?若是,请证明;若不是,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(8分)如图,AB是半圆的直径,点O是圆心,点C是OA的中点,CD⊥OA交
半圆于点D,点E是的中点,连接AE、OD,过点D作DP∥AE交BA的延长线于点P.
(1)求∠AOD的度数;
(2)求证:PD是半圆O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(11·西宁)(本小题满分10分)已知:如图,BD为⊙O的直径,ABACADBCEAE=2,ED=4.
(1)求证:△ABE∽△ADB
(2)求AB的长;
(3)延长DBF,使BFOB,连接FA,试判断直线FA与⊙O的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案