精英家教网 > 初中数学 > 题目详情

(满分11分)如图11,在△ABC中,ADBC边上的中线,EAD的中点,过点ABC的平行线交BE的延长线于F,连结CF.

(1)求证:AF=CD

(2)若AB=AC,∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论;

(3)在(2)的条件下,求sin∠ABF的值.

 

 

 

 

 

 

 

(1)∵ ADBC边上的中线,

DB=CD.

EAD的中点,

AE=DE.  

AFBC

∴ ∠AFE=DBE.                               ………………(2分)

又∵ ∠AEF=BED,                        

∴ △AEF≌△DEB,                             ………………(3分)

AF=DB

AF=CD.                                     ………………(4分)

解析:略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本小题满分11分)
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线
BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F与直线EN有怎样的位置关系?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系及点F与直线EN的位置关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分11分)如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)
(1)当x取何值时,该抛物线的最大值是多少?
(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).
① 当时,判断点P是否在直线ME上,并说明理由;
② 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市萧山区中考数学模拟试卷 题型:解答题

(11·贵港)(本题满分11分)
如图所示,在以O为圆心的两个同心圆中,小圆的半径为1,AB与小圆相切于点A,与大圆相交于点B,大圆的弦BC⊥AB于点B,过点C作大圆的切线CD交AB的延长线于点D,连接OC交小圆于点E,连接BE、BO.

(1)求证:△AOB∽△BDC;
(2)设大圆的半径为x,CD的长为y:
①求y与x之间的函数关系式;
②当BE与小圆相切时,求x的值.

查看答案和解析>>

科目:初中数学 来源:2011年海南省海口市初三学业模拟考试数学卷 题型:解答题

(满分11分)如图11,在△ABC中,ADBC边上的中线,EAD的中点,过点ABC的平行线交BE的延长线于F,连结CF.

(1)求证:AF=CD

(2)若AB=AC,∠BAC=90°,试判断四边形ADCF的形状,并证明你的结论;

(3)在(2)的条件下,求sin∠ABF的值.

 

 

 

 

 

 

 

查看答案和解析>>

科目:初中数学 来源:2010-2011年山东省德州九年级第一学期期末质量检测数学卷 题型:解答题

.(本题满分11分)

如图,在正方形ABCD内,已知两个动圆⊙O1与⊙Q2互相外切.且⊙O1与边AB,AD相切,⊙O2与边BC,CD相切,若正方形的边长为1,⊙O1与⊙Q2的半径分别为

1.(1)求的关系式;

2.(2)求⊙O1与⊙Q2的面积之和的最小值.

 

查看答案和解析>>

同步练习册答案