精英家教网 > 初中数学 > 题目详情
8.下列各数中,哪些是不等式2x-1>1的解?哪些是不等式x+13<12的解?
-9,2,-0.4,6,0,-5,$\frac{2}{7}$,5.1.

分析 利用不等式的基本性质,将两边不等式移项合并、系数化为1,求出x的集合,判断即可.

解答 解:∵2x-1>1,
∴x>1,
∴2,6,5.1是不等式2x-1>1的解;
∵x+13<12,
∴x<-1,
∴-9,-5是不等式x+13<12的解.

点评 本题考查了不等式的解的定义:使不等式成立的未知数的值叫做不等式的解.正确求出不等式的解集是解题的关键.解不等式要依据不等式的基本性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.阅读下列关于不等式|x|<2和|x|>2的解题过程后填空.
①因为|x|<2,从数轴上(如图所示)可以观察到大于-2,且小于2的数的绝对值小于2,所以|x|<2的解集为-2<x<2.

②因为|x|>2,从数轴上(如图所示)可以观察到大于-2,且小于2的数的绝对值大于2,所以|x|>2的解集为x>2或x<-2.

回答:
(1)|x|<a(a>0)的解集为-a<x<a;|x|>a(a>0)的解集为x<-a,x>a;
(2)求不等式|x-5|>3的解集就是先求不等式x-5>3和不等式x-5<-3的解集,再得到不等式|x-5|>3的解集为x>8或x<2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在?ABCD中,AB⊥AC,AB=1,BC=$\sqrt{5}$,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交于BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知方程组$\left\{\begin{array}{l}{[x]+2y=1}\\{[y]+x=2}\end{array}\right.$其中[x],[y]分别表示不大于x,y的最大整数,则该方程组的解有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.下列式子:①-7<0;②3x+1>0;③x≥2;④x-6.其中,是不等式的有(  )
A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在四边形ABCD中,AD∥BC,且AD>BC,BC=6cm,P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,问几秒时,四边形ABQP是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,AB切⊙O于B,BC⊥AO于C,AO交⊙O于D,BO=2,AO=8,P是弧BD上任一点,设k=$\frac{PA}{PC}$,问k的值是否随点P的移动而变化?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图:平行四边形ABCD中,(AB≠AD),AE,CF分别平分∠BAD和∠BCD
①求证:AE=CF;
②若E是BC中点,求证:BC=2AB.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,抛物线y=x2-2x-3与x轴交于A、B两点,过B的直线交抛物线于E,且tan∠EBA=$\frac{4}{3}$,有一只蚂蚁从A出发,先以1单位/s的速度爬到线段BE上的点D处,再以1.25单位/s的速度沿着DE爬到E点处觅食,则蚂蚁从A到E的最短时间是$\frac{64}{9}$s.

查看答案和解析>>

同步练习册答案