精英家教网 > 初中数学 > 题目详情

【题目】有一数值转换器,原理如图所示,若开始输入x的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是    ,依次继续下去,第2013次输出的结果是    

【答案】33

【解析】

试题根据题意得:开始输入x的值是7,可发现第1次输出的结果是7+5=12

2次输出的结果是×12=6

3次输出的结果是×6=3

4次输出的结果为3+5=8

5次输出的结果为×8=4

6次输出的结果为×4=2

7次输出的结果为×2=1

8次输出的结果为1+5=6

归纳总结得到输出的结果从第2次开始以638421循环,

2013﹣1÷6=335…2

2013次输出的结果与第3次输出的结果相同,为3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在中,DBC边上的一点,EAD的中点,过A点作BC的平行线交CE的延长线于点F,且,连接BF

证明:

满足什么条件时,四边形AFBD是矩形?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂计划生产AB两种产品共50件,需购买甲、乙两种材料.生产一件A产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.

1)甲、乙两种材料每千克分别是多少元?

2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?

3)在(2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?(成本=材料费+加工费)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若两条抛物线的顶点相同,则称它们为友好抛物线,抛物线C1y1=﹣2x2+4x+2C2u2=﹣x2+mx+n友好抛物线

1)求抛物线C2的解析式.

2)点A是抛物线C2上在第一象限的动点,过AAQx轴,Q为垂足,求AQ+OQ的最大值.

3)设抛物线C2的顶点为C,点B的坐标为(﹣14),问在C2的对称轴上是否存在点M,使线段MB绕点M逆时针旋转90°得到线段MB′且点B′恰好落在抛物线C2上?若存在求出点M的坐标,不存在说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】尺规作图:某学校正在进行校园环境的改造工程设计,准备在校内一块四边形花坛内栽上一棵桂花树.如图,要求桂花树的位置(视为点P),到花坛的两边ABBC的距离相等,并且点P到点AD的距离也相等.请用尺规作图作出栽种桂花树的位置点P(不写作法,保留作图痕迹).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,ECADF.

(1)求证:△AEF≌△CDF;

(2)AB=4,BC=8,EF=3,求图中阴影部分的面积。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知菱形ABCD的边长为2B=60°,点PQ分别是边BCCD上的动点(不与端点重合),且BP=CQ

1)图中除了ABCADC外,还有哪些三角形全等请写出来

2PQ在运动过程中,四边形APCQ的面积是否变化,如果变化,请说明理由如果不变,请求出面积;

3)当P在什么位置时,PCQ的面积最大,并请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,四边形为长方形,其中点的坐标分别为,且轴,交轴于点轴于点.

1)求两点坐标;

2)一动点出发,以2个单位/秒的速度沿点运动(不与点重合),在点运动过程中,连接

①试探究之间的数量关系;并说明理由;

②是否存在某一时刻,使三角形的面积等于长方形面积的?若存在,求的值并求此时点的坐标;若不存在,请说明理由;

③三角形的面积记作;三角形的面积记作;三角形的面积记作;直接写出的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:4ac﹣b2<0;2a﹣b=0;a+b+c<0;点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是(

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

同步练习册答案