精英家教网 > 初中数学 > 题目详情
如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=     °.
40°

试题分析:由AB=AD,∠BAD=20°可求得∠ADB的度数,再结合AD=DC即可求得结果.
∵AB=AD,∠BAD=20°
∴∠ADB=80°
∵AD=DC
∴∠DAC=∠C=40°.
点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

直角△ABC中,∠A∠B=20°,则∠C的度数是()
A.90或55B.20或90C.35或90D.90或70

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如下图,已知DB平分∠ADE,DE∥AB,∠CDE=82º,则∠EDB=     .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠CAB=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8
(1)EF=         ,   ∠DFB=       度
(2)请求出BD的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

阅读理解
如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重叠部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重叠部分;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合.无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情形.
情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;

情形二:如图3,沿 △ABC的∠BAC的平分线AB1折叠,剪掉重叠部分;
将余下的部分沿∠B1A1C的平分线 A1B2折叠,此时点B1与点C重合.
 
探究发现
(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC  (填“是”或“不是”)△ABC的好角;
(2)若经过三次折叠发现∠BAC是△ABC的好角,请探究∠B与∠C之间的等量关系(不妨设∠B>∠C).
根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C之问的等量关系为      .(不妨设∠B>∠C)
应用提升:
(3)小丽找到一个三角形,三个角分别为15º,60º,l05º,发现60º和l05º的两个角都是此三角形的好角.
请你完成,如果一个三角形的最小角是4º,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图所示,直线a//b,∠1=130°,∠2=70°,则∠3的度数是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在Rt△ABC中,∠C=90°,AC=5,BC=12,则连结两条直角边中点的线段长为_______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

命题“中至多有一个直角或钝角”的反设是                 .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,某海滨浴场东西走向的海岸线可近似看作直线. 救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号. 他立即沿AB方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙. 乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若CD=40米,B在C的北偏东方向,甲、乙的游泳速度均是2米/秒.问谁先到达B处?请说明理由.

查看答案和解析>>

同步练习册答案