精英家教网 > 初中数学 > 题目详情
如图,AB是⊙O的直径,AD、BD是半圆的弦,且∠PDA=∠PBD.

(1)求证:PD是⊙O的切线;
(2)如果∠BDE=60°,PD=,求PA的长.
(1)连接OD,先根据圆的基本性质可得∠ADO=∠PBD,再由∠PDA=∠PBD可得∠PBD=∠BDO,根据圆周角定理可得∠ADB=90°即∠ADO+∠BDO=90°,即可证得结论;(2)1

试题分析:(1)连接OD,先根据圆的基本性质可得∠ADO=∠PBD,再由∠PDA=∠PBD可得∠PBD=∠BDO,根据圆周角定理可得∠ADB=90°即∠ADO+∠BDO=90°,即可证得结论;
(2)先证得△AOD是等边三角形,即可得到∠P=30°,根据含30度角的直角三角形的性质可得PD=2DO,在Rt△POD中,设OD=AO=x,根据勾股定理即可列方程求得x的值,从而得到结果.
(1)连接OD,

∵OB=OD,
∴∠ADO=∠PBD.
又∵∠PDA=∠PBD,
∴∠PBD=∠BDO.
又∵AB是⊙O直径,
∴∠ADB=90°即∠ADO+∠BDO=90°,
∴∠ADO+∠PDA=90°即OD⊥PD
∴PD是⊙O的切线. 
(2)∵∠BDE=60°,∠ODE=90°,
∴∠BDO=30°,
∵∠ADO+∠BDO=90°,
∴∠ADO=60°.
∴△AOD是等边三角形
∴∠POD=60°,
∵OD⊥PD,
∴∠P=30°,
∴PD=2DO.
在Rt△POD中,设OD=AO=x,则
,解得(不合题意,舍去),
∴AO=1,PO=2,
∴PA=PO-AO=1.
点评:此类问题知识点较多,综合性较强,是中考常见题,一般难度不大.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.

(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED   EC(填“”“”或“”)
(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?
(3)当⊙O过BC中点时(如图3),求CE长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,OAOB是⊙O的半径,且OAOB,点COB延长线上任意一点,过点CCD切⊙O于点D,连结ADDC于点E.则CD=CE吗?如成立,试说明理由。
(2)若将图中的半径OB所在直线向上平行移动交OAF,交⊙OB’,其他条件不变,如图2,那么上述结论CD=CE还成立吗?为什么?
(3)若将图中的半径OB所在直线向上平行移动到⊙O外的CF,点EDA的延长线与CF的交点,其他条件不变,如图3,那么上述结论CD=CE还成立吗?为什么

图 1                 图 2             图 3

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在⊙O中,AB是直径,AD是弦,∠ADE=60°,∠C=30°.

(1)判断直线CD是否为⊙O的切线,请说明理由;
(2)若CD="3" ,求BC的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,以点O为圆心的两个同心圆,半径分别为5和3,若大圆的弦AB与小圆相交,则弦长AB的取值范围是(    )
A.8≤AB≤10B.AB≥8
C.8<AB<10D.8<AB≤10

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知Rt△ABC,直角边AC、BC的长分别为3cm和4cm,以AC边所在的直线为轴将△ABC旋转一周,则所围成的几何体的侧面积是      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

选做题:从甲乙两题中选作一题,如果两题都做,只以甲题计分
题甲:已知矩形两邻边的长是方程的两根.
(1)求的取值范围;
(2)当矩形的对角线长为时,求的值;
(3)当为何值时,矩形变为正方形?

题乙:如图,直径,于点,交
,且
(1)判断直线的位置关系,并给出证明;
(2)当时,求的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AB⊥CD,∠BAD=300,则∠AEC的度数等于(       )
A.30°B.50°C.60°D.70°

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC·tanB=(  )
A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案