精英家教网 > 初中数学 > 题目详情

如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论数学公式成立.(考生不必证明)
(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.
(3)发现:通过上述过程,你发现G在直线CD上时,结论数学公式还成立吗?

解:(1)结论成立
证明:由已知易得FH∥AB,

∵FH∥GC,


(2)∵G在直线CD上,
∴分两种情况讨论如下:
①G在CD的延长线上时,DG=10,
如图1,过B作BQ⊥CD于Q,
由于四边形ABCD是菱形,∠ADC=60°,
∴BC=AB=6,∠BCQ=60°,
∴BQ=3,CQ=3,
∴BG=
又由FH∥GC,可得
而△CFH是等边三角形,
∴BH=BC-HC=BC-FH=6-FH,

∴FH=
由(1)知
∴FG=
②G在DC的延长线上时,CG=16,
如图2,过B作BQ⊥CG于Q,
∵四边形ABCD是菱形,∠ADC=60°,
∴BC=AB=6,∠BCQ=60°.
∴BQ=3,CQ=3.
∴BG==14.
又由FH∥CG,可得

∵BH=HC-BC=FH-BC=FH-6,
∴FH=
∵FH∥CG,

∴BF=14×÷16=
∴FG=14+

(3)G在DC的延长线上时,

成立.
结合上述过程,发现G在直线CD上时,结论还成立.
分析:(1)借助中间比进行证明,根据平行线分线段成比例定理分别证明两个比都等于即可;
(2)首先应画出两个不同的图形进行分析.构造30°的直角三角形,然后计算两条直角边的长,在两种情况中,GQ=16+3=19或16-3=13,然后根据勾股定理计算BG的长,进一步根据比例式求得FG的长;
(3)成立,根据(2)中的过程,可以分别求得左右两个比,从而证明结论.
点评:证明比例式的时候,可以利用相似或利用平行线分线段成比例定理进行证明.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读与理解:
三角形的中线的性质:三角形的中线等分三角形的面积,
即如图1,AD是△ABC中BC边上的中线,
S△ABD=S△ACD=
1
2
S△ABC

理由:∵BD=CD,∴S△ABD=
1
2
BD×AH=
1
2
CD×AH=S△ACD
=
1
2
S△ABC

即:等底同高的三角形面积相等.
操作与探索
在如图2至图4中,△ABC的面积为a.
(1)如图2,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S1,则S1=
 
(用含a的代数式表示);
(2)如图3,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE.若△DEC的面积为S2,则S2=
 
(用含a的代数式表示),并写出理由;
(3)在图3的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图4).若阴影部分的面积为S3,则S3=
 
(用含a的代数式表示).
精英家教网
拓展与应用
如图5,已知四边形ABCD的面积是a,E、F、G、H分别是AB、BC、CD的中点,求图中阴影部分的面积?精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论
FH
AB
=
FG
BG
成立.(考生不必证明)
(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;
(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.
(3)发现:通过上述过程,你发现G在直线CD上时,结论
FH
AB
=
FG
BG
还成立吗?
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

在直角坐标系xoy中,将面积为3的直角三角形AGO沿直线y=x翻折,得到三角形CHO,连接AC,已知反比例函数y=
kx
(x>0)
的图象过A、C两点,如图①.
(1)k的值是
 

(2)在直线y=x图象上任取一点D,作AB⊥AD,AC⊥CB,线段OD交AC于点F,交AB于点E,P为直线OD上一动点,连接PB、PC、CE.
㈠如图②,已知点A的横坐标为1,当四边形AECD为正方形时,求三角形PBC的面积;
㈡如图③,若已知四边形PEBC为菱形,求证四边形PBCD是平行四边形;
㈢若D、P两点均在直线y=x上运动,当∠ADC=60°,且三角形PBC的周长最小时,请直接写出三角形PBC与四边形ABCD的面积之比.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•太原一模)如图1,已知四边形ABCD是正方形,对角线AC、BD相交于点E,以点E为顶点作正方形EFGH,使点A、D分别在EH和EF上,连接BH、AF.
(1)判断并说明BH和AF的数量关系;
(2)将正方形EFGH绕点E顺时针方向旋转θ(0°≤θ≤360°),设AB=a,EH=b,且a<2b.
①如图2,连接AG,设AG=x,请直接写出x的取值范围;当x取最大值时,直接写出θ的值;
②如果四边形ABDH是平行四边形,请在备用图中补全图形,并求a与b的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将已知四边形分别在格点图中补成关于已知直线:l、m、n、p为对称轴的轴对称的图形.

查看答案和解析>>

同步练习册答案