精英家教网 > 初中数学 > 题目详情
15.已知△ABC中,AB=4,AC=6,D是AB的中点,E为AC边上的点,△ADE与△ABC相似,则AE=3或$\frac{4}{3}$.

分析 分类讨论:当△ADE∽△ABC时,$\frac{AE}{AC}$=$\frac{AB}{AD}$,即$\frac{AE}{6}$=$\frac{2}{4}$;当△ADE∽△ACB时,$\frac{AE}{AB}$=$\frac{AD}{AC}$,即$\frac{AE}{4}$=$\frac{2}{6}$,然后根据比例性质分别计算出对应的AE的值.

解答 解:当△ADE∽△ABC时,$\frac{AE}{AC}$=$\frac{AB}{AD}$,即$\frac{AE}{6}$=$\frac{2}{4}$,则AE=3;
当△ADE∽△ACB时,$\frac{AE}{AB}$=$\frac{AD}{AC}$,即$\frac{AE}{4}$=$\frac{2}{6}$,则AE=$\frac{4}{3}$,
所以AE的长为3或$\frac{4}{3}$.
故答案为:3或$\frac{4}{3}$.

点评 本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

5.将一个小球在如图所示的地砖上自由滚动,最终没有停在黑色方砖上的概率为(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{1}{2}$D.$\frac{5}{9}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF等于(  )
A.a:b:cB.$\frac{1}{a}$:$\frac{1}{b}$:$\frac{1}{c}$C.sinA:sinB:sinCD.cosA:cosB:cosC

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.挂钟的分针长10cm,经过45min,它的针尖转过的路程是(  )
A.15πcmB.75πcmC.$\frac{75π}{2}$cmD.$\frac{15π}{2}cm$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.设抛物线y=x2-4x+k的顶点在直线y=x上,则k的值为(  )
A.-6B.-4C.4D.6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知:AB为⊙O的直径,C为⊙O上一点,F为$\widehat{BC}$的中点,过F作DE∥BC交AB的延长线于D,交AC的延长线于E.
(1)求证:DE为⊙O的切线;
(2)若⊙O的半径为10,∠A=45°,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.先化简再求值$\frac{1}{a+1}$-$\frac{a+3}{{a}^{2}-1}$×$\frac{{a}^{2}-2a+1}{{a}^{2}+4a+3}$,已知a2+2a-7=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡比为i=1:$\frac{4}{3}$的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为(  )
A.5mB.6mC.7mD.8m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.正方形的边长为10cm,在其中挖去一个边长为x cm的正方形
(1)求x的取值范围;
(2)若剩余部分的面积为y cm2,写出y与x的函数解析式;
(3)当挖去的正方形的边长为1cm、2cm、3cm、$\sqrt{70}$cm时,求剩余部分的面积.

查看答案和解析>>

同步练习册答案