精英家教网 > 初中数学 > 题目详情

如图,抛物线的顶点P的坐标是(1,-3),则此抛物线对应的二次函数有


  1. A.
    最大值1
  2. B.
    最小值-3
  3. C.
    最大值-3
  4. D.
    最小值1
B
分析:当抛物线开口向上时,顶点纵坐标就是二次函数的最小值.
解答:因为抛物线开口向上,顶点P的坐标是(1,-3),
所以二次函数有最小值是-3.
故选B.
点评:主要考查了求抛物线的顶点坐标及最值的方法.当抛物线开口向上时,顶点纵坐标就是二次函数的最小值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图,抛物线的顶点为点D,与y轴相交于点A,直线y=ax+3与y轴也交于点A,矩形ABCO的顶点B在精英家教网此抛物线上,矩形面积为12,
(1)求该抛物线的对称轴;
(2)⊙P是经过A、B两点的一个动圆,当⊙P与y轴相交,且在y轴上两交点的距离为4时,求圆心P的坐标;
(3)若线段DO与AB交于点E,以点D、A、E为顶点的三角形是否有可能与以点D、O、A为顶点的三角形相似,如果有可能,请求出点D坐标及抛物线解析式;如果不可能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,抛物线的顶点为A(1,-4),且过点B(3,0).
(1)求该抛物线的解析式;
(2)将该抛物线向右平移几个单位,可使平移后的抛物线经过原点?并直接写出平移后抛物线与x轴的另一个交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线的顶点坐标为M(1,4),与x轴的一个交点是A(-1,0),与y轴交于点B,直线x=1交x轴于点N.
(1)求抛物线的解析式及点B的坐标;
(2)求经过B、M两点的直线的解析式,并求出此直线与x轴的交点C的坐标;
(3)若点P在抛物线的对称轴x=1上运动,请你探索:在x轴上方是否存在这样的P点,使精英家教网以P为圆心的圆经过点A,并且与直线BM相切?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河南)如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,-2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•雅安)如图,抛物线的顶点A的坐标(0,2),对称轴为y轴,且经过点(-4,4).
(1)求抛物线的表达式.
(2)若点B的坐标为(0,4),P为抛物线上一点(如图),过点P作PQ⊥x轴于点Q,连接PB.求证:PQ=PB.
(3)若点C(-2,4),利用(2)的结论.判断抛物线上是否存在一点K,使△KBC的周长最小?若存在,求出这个最小值,并求此时点K的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案