精英家教网 > 初中数学 > 题目详情
9.在Rt△ABC中,AC=BC,∠ACB=90°,D是AC的中点,DG⊥AC交AB于点G.E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与CF,过点F作FH⊥FC,交直线AB于点H
(1)试说明DG=DC.
(2)判断FH与FC的数量关系并加以说明.

分析 (1)求出∠A=∠AGD=45°,根据等腰三角形的判定得出AD=DG,根据AD=DC求出即可;
(2)求出FG=EC,∠FEC=∠FGH,∠GFH=∠FCD,根据ASA推出△FGH≌△FEC,根据全等三角形的性质得出即可.

解答 解:(1)∵AC=BC,∠ACB=90°,
∴∠A=45°,
∵DG⊥AC,
∴∠ADG=90°,
∴∠A=∠AGD=45°,
∴AD=DG,
∵AD=DC,
∴DG=DC;

(2)FH=FC
理由如下:
∵DG=DC,DE=DF,
∴FG=EC,
∵DG⊥AC,
∴∠EDF=90°,
∵DF=DE,
∴∠FED=∠CFD═45°,
∴∠FEC=135°,
同理可求∠FGH=135°,
∴∠FEC=∠FGH,
∵FH⊥FC,
∴∠HFC=90°,
∴∠GFH+∠DFC=90°,
∵∠ADG=90°,
∴∠DFC+∠DCF=90°,
∴∠GFH=∠FCD,
在△GFH和△FEC中
$\left\{{\begin{array}{l}{∠HGF=∠FEC}\\{GF=EC}\\{∠GFH=∠FCE}\end{array}}\right.$
∴△FGH≌△FEC(ASA),
∴FH=FC.

点评 本题考查了全等三角形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.把下列各题中的分式通分:
(1)$\frac{1}{6x-4y}$,$\frac{2y}{9{x}^{2}-4{y}^{2}}$,$\frac{x}{3x+2y}$;
(2)$\frac{1}{(x+y)(y+z)}$,$\frac{1}{(y+z)(x+z)}$,$\frac{1}{(x+y)(x+z)}$;
(3)$\frac{b}{a(x-1)(2-x)}$,$\frac{a}{b(1-x)(x-2)}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,已知点A与点B(2,1),在抛物线C1:y=-$\frac{3}{2}$x2+bx上,过点A作AC∥y轴交OB于点C,且tan∠OAC=$\frac{1}{2}$.
(1)求b的值及点C的坐标;
(2)将抛物线C1沿y轴上下平移,平移后的抛物线C2交直线AB与点E($\frac{7}{3}$,$\frac{2}{3}$)交y轴于点F,点D(2,m)为平移后的抛物线C2上一点,点P为直线EF上一点,如果△ACO∽△PDF,求点P坐标;
(3)将抛物线C1与△ACO同时平移点A,C,O平移后分别记为A′,C′,O′,若点A′恰好落在线段AB上,△A′,C′,O′与△AOB重叠部分的面积是$\frac{3}{16}$,求平移后的抛物线C3的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解方程:
(1)$\frac{2}{x-3}$=$\frac{3}{x}$
(2)$\frac{3x}{x+2}$+1=$\frac{8}{2x+4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.小明同学在做作业时,遇到这样一道几何题:
已知:如图1,l1∥l2∥l3,点A、M、B分别在直线l1,l2,l3上,MC平分∠AMB,∠1=28°,∠2=70°.求:∠CMD的度数.
小明想了许久没有思路,就去请教好朋友小坚,小坚给了他如图2所示的提示:

请问小坚的提示中①是∠2,④是∠AMD.
理由②是:两直线平行,内错角相等;
理由③是:角平分线定义;
∠CMD的度数是21°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q
(1)若BP=$\frac{\sqrt{3}}{3}$,求∠BAP的度数;
(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;
(3)以PQ为直径作⊙M.
①判断FC和⊙M的位置关系,并说明理由;
②当直线BD与⊙M相切时,直接写出PC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在△ABC中,顶点C在AB边上的射影为D,且CD2=AD•DB,求证:△ABC是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,锐角三角形ABC中,BC=6,BC边上的高线长为4,PQRS是△ABC的内接矩形,且S矩形PQRS=$\frac{1}{4}$S△ABC,记$\frac{BS}{BA}$=λ,求λ的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.求$\left\{\begin{array}{l}{5x+7y+3z=25}\\{3x-y-6z=2}\end{array}\right.$的自然数解.

查看答案和解析>>

同步练习册答案