【题目】如图,矩形 OABC 的顶点 O 在坐标原点,顶点 A,C 分别在 x,y 轴的正半轴上,顶点 B 在反比例函数 y (k 为常数,k>0,x>0)的图象上,将矩形 OABC 绕点 B 逆时针方向旋转 90°得到矩形 BCOA ,点 O 的对应点O 恰好落在此反比例函数图象上.延长 AO ,交 x轴于点 D,若四边形CADO 的面积为 2,则 k 的值为( )
A. +1B. -1C. 2 +2D. 2 -2
【答案】A
【解析】
设B(m,n),则OA=m,OC=n,根据旋转的性质得到O'C'=n,A'O'=m,于是得到O'(m+n,n﹣m),于是得到方程(m+n)(n﹣m)=mn,由四边形CADO 的面积为 2,得到(n-m)n=2,解方程即可得到m、n的值,由k=mn即可得到结论.
设B(m,n),则OA=m,OC=n.
∵矩形 OABC 绕点 B 逆时针方向旋转 90°得到矩形 BCOA,∴O'C'=n,A'O'=m,∴A'(m+n,n)∴O'(m+n,n﹣m).
∵四边形CADO 的面积为 2,∴(n-m)n=2,∴n2=2+mn.
∵B,O'在此反比例函数图象上,∴(m+n)(n﹣m)=mn,∴m2+mn﹣n2=0,∴m2+mn-2-mn=0,∴m=±(负值舍去),∴m=,∴,解得:n=(负值舍去),∴n=,∴k=mn==.
故选A.
科目:初中数学 来源: 题型:
【题目】如图,点E,F在函数y=(k>0)的图象上.直线EF:y=﹣x+n分别与x轴、y轴交于点A,B.且BE=AF=m,过点E作EP⊥y轴于P.已知△0EP的面积为1.则k的值是_____.△OEF的面积是_____(用含m,n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-4,2)、B(0,4)、C(0,2),
(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;
(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx﹣2上.
(1)求直线的函数表达式;
(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.
ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;
ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:关于x的方程x2-(m-1)x-2m2+m=0
(1)求证:无论m为何实数,方程总有实数根;
(2)若此方程有两个实数根x1,x2,且 x12+x22=2 ,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个倾斜角为 的斜坡,将一个小球从斜坡的坡脚 O 点处抛出,落在 A点处,小球的运动路线可以用抛物线来刻画,已知 tan
(1)求抛物线表达式及点 A 的坐标.
(2)求小球在运动过程中离斜坡坡面 OA 的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=I,FD=2,则G点的坐标为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.
【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.
【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足 关系时,仍有EF=BE+FD;请证明你的结论.
【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据: =1.41, =1.73)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com