精英家教网 > 初中数学 > 题目详情
6.如果将抛物线y=x2+2x-1沿y轴向上平移,使它经过点A(1,5),那么所得新抛物线的解析式是y=x2+2x+2.

分析 先把解析式配成顶点式得到抛物线的顶点坐标为(-1,-2),再利用点平移的坐标规律,把点(-1,-2)向上平移m个单位所得对应点的坐标为(-1,-2+m),则根据顶点式写出平移的抛物线解析式为y=(x+1)2-2+m,然后把A点坐标代入求出m的值即可得到平移后得到的抛物线的解析式.

解答 解:因为y=y=x2+2x-1=(x+1)2-2,所以抛物线的顶点坐标为(-1,-2),点(-1,-2)向上平移m个单位所得对应点的坐标为(-1,-2+m),所以平移的抛物线解析式为y=(x+1)2-2+m,把A(1,5)代入得
4-2+m=5,解得m=3,所以平移后的抛物线解析式为y=(x+1)2+1,即y=x2+2x+2.
故答案为y=x2+2x+2.

点评 本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

16.不等式组$\left\{\begin{array}{l}{5x-4≤2x+5}\\{7+2x<6+3x}\end{array}\right.$的整数解的和是5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图,在扇形OAB中,∠AOB=90°,半径OA=6.将扇形OAB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,则有下列选项:
①∠ACD=60°;
②CB=6$\sqrt{3}$;
③阴影部分的周长为12+3π;
④阴影部分的面积为9π-12$\sqrt{3}$.
其中正确的是①③④(填写编号).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.二次函数y=ax2+bx+c(a≠0)如图所示,下列结论中:
①4ac-b2<0;
②3b+2c<0;
③4a+c<2b;
④m(am+b)+b<a(m≠-1).
其中正确的结论有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.有五张正面分别写有数字-3,-2,1,2,3的卡片,它们的背面完全相同,现将这五张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的四张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是(  )
A.$\frac{3}{5}$B.$\frac{1}{2}$C.$\frac{3}{10}$D.$\frac{7}{10}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知抛物线与x轴交于A(6,0)、B(-$\frac{5}{4}$,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.

(1)求此抛物线的解析式;
(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,M′N′、M′O′与直线AC分别交于点E、F.
①当点F为M′O′的中点时,求t的值;
②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是1.2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.某数学活动小组测量了学校旗杆的高度.如图,BC为旗杆,他们先在A点测得C的仰角为45°,再向前走3米到达D点,测得C的仰角为53°,求旗杆高.(结果保留整数)
参考数据:sin 53°≈0.8,cos 53°≈0.6,tan 37°≈0.75,$\sqrt{2}$≈1.41.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.解不等式$\frac{x+1}{2}$≥3(x-1)-4..

查看答案和解析>>

同步练习册答案