分析 根据题意把△ACB绕点F旋转180°后,得到△BMA,得到四边形ACBM为矩形,分别延长EF和DF,与AM交于G,与MB交于交于H,连接DG,GH,HE,DE,得到四边形DEHG为菱形,根据勾股定理计算即可.
解答 解:根据题意把△ACB绕点F旋转180°后,得到△BMA,得到四边形ACBM为矩形,
分别延长EF和DF,与AM交于G,与MB交于交于H,连接DG,GH,HE,DE,
∵∠AFD=∠BFH,AF=FB,∠ADF=∠BHF,
∴△ADF≌△BHF,
∴DF=HF,
同理证明△AFG≌△BFE,得到GF=EF,且DH⊥GE,
∴四边形DEHG为菱形,
∴DE=DG=$\sqrt{{8}^{2}+{4}^{2}}$=4$\sqrt{5}$.
点评 本题考查的是直角三角形的性质,在直角三角形中,斜边上的中线等于斜边的一半.
科目:初中数学 来源: 题型:选择题
A. | -$\frac{3}{2}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com