精英家教网 > 初中数学 > 题目详情
如图所示,正方形ABCD内接于⊙O,直径MN∥AD,则阴影部分面积占圆面积( )

A.
B.
C.
D.
【答案】分析:连接AM、BM.根据图形的轴对称性和等底等高的三角形的面积相等,易知阴影部分的面积即为扇形OAB的面积,再根据正方形的四个顶点是圆的四等分点,即可求解.
解答:解:连接AM、BM.
∵MN∥AD∥BC,OM=ON,
∴四边形AOBN的面积=四边形AOBM的面积.
再根据图形的轴对称性,得
阴影部分的面积=扇形OAB的面积=圆面积.
故选B.
点评:此题注意能够把不规则图形的面积进行转换.
涉及的知识点:两条平行线间的距离处处相等;等底等高的三角形的面积相等;正方形的每一条边所对的圆心角是90°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD中,E为AB中点,F为AD中点,DE、CF交于O点,求证:DE⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODC交OC于点E,若AB=2,则线段OE的长为(  )
A、
2
2
B、
2
2
3
C、2-
2
D、
2
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示的正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△AB1C1,再作出△AB1C1关于原点O成中心对称的△A1B2C2.(要求:用直尺作出图形即可,不用保留作图痕迹,不写作法.)
(2)点B1的坐标是
(-2,-3)
(-2,-3)
,点C2的坐标是
(3,1)
(3,1)

(3)求△ABC绕点A逆时针旋转90°的过程中,线段AB扫过的面积.

查看答案和解析>>

同步练习册答案