精英家教网 > 初中数学 > 题目详情

【题目】如图,一学校(点M)距公路(直线l)的距离(MA)为1km,在公路上距该校2km处有一车站(点N),该校拟在公路上建一个公交车停靠点(点p),以便于本校职工乘车上下班,要求停靠站建在AN之间且到此校与车站的距离相等,请你计算停靠站到车站的距离.

【答案】停靠站P到车站N的距离是

【解析】连接PM,则有PM=PN,在RtAMN中根据勾股定理可求出AN的长,设NPx,MP=NP=x,AP=-x,在RtAMP中,由勾股定理求出x的值即可得.

连接PM,则有PM=PN,

RtAMN中,∠MAN=90°,MN=2,AM=1,AN=

NPx,MP=NP=x,AP=-x,

RtAMP中,∠MAP=90°,由勾股定理有:MP2=AP2+AM2

12+(-x)2=x2

x=

所以,停靠站P到车站N的距离是.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走均为正,向下向左走均为负.如果从AB记为:A→B(+1,+4),从BA记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向.

(1)图中A→C(     ),B→C(      ),C→   (+1,﹣2);

(2)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置;

(3)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的路程.

(4)若图中另有两个格点M、N,且M→A(3﹣a,b﹣4),M→N(5﹣a,b﹣2),则N→A应记为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD是角平分线,E是AB上一点,AE=AC,EFBC交AC于F.下列结论①△ADC≌△ADE;EC平分DEF;AD垂直平分CE.其中结论正确的有( )个

A. 1 B. 2 C. 3 D. 0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG//CF;⑤S△FGC=3.6.其中正确结论是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线AC的垂直平分线分别交AB,CD于点E,F,连接AF,CE,如果∠BCE=26°,则∠CAF=_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线的表达式为AB的坐标分别为

(1,0),(0,2),直线AB与直线相交于点P

(1)求直线AB的表达式;

(2)求点P的坐标;

(3)若直线上存在一点C,使得APC的面积是APO的面积的2倍,直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,CEABAB延长线于点E,点F为点B关于CE的对称点,连接CF,分别延长DCCF至点GH,使FH=CG,连接AGDH交于点P

(1)依题意补全图1;

(2)猜想AGDH的数量关系并证明;

(3)若∠DAB=70°,是否存在点G,使得ADP为等边三角形?若存在,求出CG的长;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y= 和y= 在第一象限内的图象如图,点P是y= 的图象上一动点,PC⊥x轴于点C,交y= 的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA= AP.其中所有正确结论的序号是(
A.①②③
B.②③④
C.①③④
D.①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE= AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是(
A.①②
B.②③
C.①③
D.①④

查看答案和解析>>

同步练习册答案