2£®ÎÒÊÐ×Ôʵʩпγ̸ĸïÒÔÀ´£¬ÖÐѧÉúÔÚ¿ÎÌÃÉϵġ°×ÔÖ÷ѧϰ¡¢ºÏ×÷½»Á÷¡±ÄÜÁ¦ÓÐÁ˺ܴóÌá¸ß£¬ÕÅÀÏʦΪÁËÁ˽âËù½Ì°à¼¶Ñ§ÉúµÄ¡°×ÔÖ÷ѧϰ¡¢ºÏ×÷½»Á÷¡±µÄ¾ßÌåÇé¿ö£¬¶Ô¸Ã°à²¿·ÖѧÉú½øÐÐÁËΪÆÚÒ»¸öÔµĸú×Ùµ÷²é£¬²¢½«µ÷²é½á¹û·Ö³ÉËÄÀ࣬A£ºÌرðºÃ£»B£ººÃ£»C£ºÒ»°ã£»D£º½Ï²î£¬ÇÒ½«µ÷²é½á¹û»æÖƳÉÒÔÏÂÁ½·ù²»ÍêÕûµÄͳ¼Æͼ£®ÇëÄã¸ù¾Ýͳ¼Æͼ½â´ðÏÂÁÐÎÊÌ⣺

£¨1£©±¾´Îµ÷²éÖУ¬ÕÅÀÏʦһ¹²µ÷²éÁË20ÃûѧÉú£¬ÆäÖÐCÀàÅ®ÉúÓÐ2Ãû£»
£¨2£©Ç뽫ÌõÐÎͳ¼Æͼ²¹³äÍêÕû£»
£¨3£©ÎªÁ˹²Í¬½ø²½£¬ÕÅÀÏʦÏë´Ó±»µ÷²éµÄAÀàºÍDÀàѧÉúÖзֱðѡȡһλͬѧ½øÐС°Ò»°ïÒ»¡±»¥Öúѧϰ£¬ÇëÓÃÁÐ±í·¨»ò»­Ê÷״ͼµÄ·½·¨Çó³öËùÑ¡Á½Î»Í¬Ñ§Ç¡ºÃÊÇÒ»ÃûÄÐͬѧºÍÒ»ÃûŮͬѧµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©ÀûÓÃAÀàѧÉú×ÜÊý³ýÒÔAÀàѧÉúËùÕ¼°Ù·Ö±È¿ÉµÃµ÷²éѧÉú×ÜÊý£»ÀûÓÃѧÉú×ÜÊý¼õÈ¥A¡¢B¡¢DÀàѧÉúÊýÁ¿ÔÙ¼õÈ¥CÀàѧÉúÄÐÉúÊýÁ¿¿ÉµÃCÀàÅ®ÉúÊý£»
£¨2£©¸ù¾Ý£¨1£©¼ÆËãµÄCÀàÅ®ÉúÊý²¹Í¼¼´¿É£»
£¨3£©Ê×ÏÈ»­³öÊ÷״ͼ£¬½ø¶ø¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©µ÷²éµÄѧÉúÊý£º3¡Â15%=20£¬
CÀàÅ®Éú£º20-3-10-3-2=2£¬
¹Ê´ð°¸Îª£º20£»2£»

£¨2£©ÈçͼËùʾ£º
£»

£¨3£©
£¬
ÓÉÊ÷״ͼ¿ÉµÃ¹²ÓÐ6ÖÖ¿ÉÄܵĽá¹û£¬ÆäÖÐÇ¡ºÃÒ»ÃûÄÐͬѧºÍÒ»ÃûŮͬѧµÄ½á¹ûÓÐ3ÖУ¬ËùÒÔÇ¡ºÃÊÇÒ»ÃûÄÐͬѧºÍÒ»ÃûŮͬѧµÄ¸ÅÂÊÊÇ£º$\frac{3}{6}$=$\frac{1}{2}$£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁËÌõÐÎͳ¼Æͼ£¬ÒÔ¼°¸ÅÂÊ£¬¹Ø¼üÊÇÕÆÎÕ¸ÅÂÊ=ËùÇóÇé¿öÊýÓë×ÜÇé¿öÊýÖ®±È£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬AB¡ÍCD£¬´¹×ãΪO£¬Ö±ÏßEF¾­¹ýµãO£®
£¨1£©Ð´³ö¡Ï1µÄÁÚ²¹½Ç£»
£¨2£©Èô¡Ï1=30¡ã£¬Çó¡Ï2£¬¡Ï3£¬¡Ï4µÄ¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨Áз½³Ì×é½âÓ¦ÓÃÌ⣩ÐÂжùͯ·þ×°µê¶Ô¡°Ììʹ¡±ÅÆ·þ×°½øÐе÷¼Û£¬ÆäÖÐAÐÍÿ¼þµÄ¼Û¸ñÉϵ÷ÁË10%£¬BÐÍÿ¼þµÄ¼Û¸ñϵ÷ÁË5%£¬ÒÑÖªµ÷¼ÛÇ°ÂòÕâÁ½ÖÖ·þ×°¸÷Ò»¼þ¹²»¨·Ñ70Ôª£¬µ÷¼ÛºóÂò3¼þAÐÍ·þ×°ºÍ2¼þBÐÍ·þ×°¹²»¨·Ñ175Ôª£¬ÎÊÕâÁ½ÖÖ·þ×°ÔÚµ÷¼Ûǰÿ¼þ¸÷¶àÉÙÔª£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®¼×¡¢ÒÒÁ½¸öÈË×öÓÎÏ·£ºÔÚÒ»¸ö²»Í¸Ã÷µÄ¿Ú´üÖÐ×°ÓÐ4ÕÅÏàͬµÄÖ½ÅÆ£¬ËüÃÇ·Ö±ð±êÓÐÊý×Ö1£¬2£¬3£¬4£®´ÓÖÐËæ»úÃþ³öÒ»ÕÅÖ½ÅÆÈ»ºó·Å»Ø£¬ÔÙËæ»úÃþ³öÒ»ÕÅÖ½ÅÆ£¬ÈôÁ½´ÎÃþ³öµÄÖ½ÅÆÉÏÊý×ÖÖ®ºÍÊÇ3µÄ±¶Êý£¬Ôò¼×ʤ£»·ñÔòÒÒʤ£®Õâ¸öÓÎÏ·¶ÔË«·½¹«Æ½Âð£¿ÇëÁбí¸ñ»ò»­Ê÷״ͼ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÈôʵÊýx£¬yÂú×ã¹Øϵʽ$\sqrt{x+2}$+4£¨y-2£©2=0£¬Ôò£¨x-y£©yµÄÖµÊÇ16£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÏÈ»¯¼ò£º£¨a+1-$\frac{3a-1}{a}$£©¡Â$\frac{a-1}{a}$£¬ÔÙÈÎÑ¡Ò»¸öÄãϲ»¶µÄÊýa´úÈëÇóÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÏÈÔĶÁÀí½âÏÂÃæµÄÀýÌ⣬ÔÙ°´ÒªÇó½â´ð£º
ÀýÌ⣺½â²»µÈʽ£¨x+3£¨x-3£©£¾0£®
½â£ºÓÉÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬Í¬ºÅµÃÕý¡±
ÓТÙ$\left\{\begin{array}{l}{x+3£¾0}\\{x-3£¾0}\end{array}\right.$£¬»ò$\left\{\begin{array}{l}{x+3£¼0}\\{x-3£¼0}\end{array}\right.$
½â²»µÈʽ×é¢Ù£¬µÃx£¾3£¬½â²»µÈʽ×é¢Ú£¬µÃx£¼-3£®
¹Ê²»µÈʽ£¨x+3£©£¨x-3£©£¾µÄ½â¼¯Îªx£¾3»òx£¼-3£®
ÎÊÌ⣺Çó²»µÈʽ$\frac{5x+1}{2x-3}$£¼0£¨2x-3¡Ù0£©µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®£¨1£©½â·½³Ì×é$\left\{\begin{array}{l}{2x-5y=-3¢Ù}\\{y-4x=-3¢Ú}\end{array}\right.$
£¨2£©½â²»µÈʽ×é$\left\{\begin{array}{l}{3x-1£¾5¢Ù}\\{2£¨x+2£©£¼x+7¢Ú}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺
£¨1£©2a£¨a-b£©-£¨a-b£©2£»
£¨2£©£¨1+$\frac{3}{a-2}$£©¡Â$\frac{a+1}{{a}^{2}-4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸