精英家教网 > 初中数学 > 题目详情
如图是某汽车行驶的路程s(千米)与时间t(分钟)的函数关系图.观察图中所提供的信息,解答下列问题:
(1)汽车在前9分钟的平均速度是______千米/分钟.
(2)汽车在途中停留的时间为______分钟.
(3)当16≤t≤30时,求s与t的函数解析式.
(1)由图象得,平均速度=
12
9
=
4
3
(千米/分钟);

(2)由图象可知
汽车在途中停留的时间=16-9=7(分钟);

(3)设该一次函数的解析式为s=mt+n,
由图可知,图象经过点(16,12)和(30,40),因此可列如下方程组
12=16m+n
40=30m+n

解得m=2,n=-20,
∴所求的函数解析式为s=2t-20.
答:(1)
4
3
;(2)7;(3)所求的函数解析式为s=2t-20.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在钓鱼岛海域,我海监船发现一艘非法船只,随即派出快艇拦截,如图为两船航行时路程与时间的函数图象,l1为非法船只航线,l2为我快艇航线,问:
(1)在刚出发时我快艇距非法船多少海里?
(2)计算非法船与快艇的速度分别是多少?
(3)写出l1、l2路程与时间之间的函数关系式?
(4)问两船出发6分钟时相距几海里
(5)猜想,我快艇能否追上非法船,若能追上那么在出发后何时追上?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,函数y=2x+12的图象分别交x轴、y轴于A、B两点.过点A的直线交y轴正半轴于点C,且点C为线段OB的中点.
(1)求直线AC的表达式;
(2)如果四边形ACPB是平行四边形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知一次函数y=(a-2)x+b的图象如图所示,那么a的取值范围是(  )
A.a<2B.a>2C.a<0D.a>0

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知一次函数y=kx+b的图象经过点P(0,-3),且与函数y=
1
2
x+1
的图象相交于点A(
8
3
,a)

(1)求a的值;
(2)若函数y=kx+b的图象与x轴的交点是B,函数y=
1
2
x+1
的图象与y轴的交点是C,求四边形ABOC的面积(其中O为坐标原点).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是y轴上一动点,是否存在平行于y轴的直线x=t,使它与直线y=x和直线y=-
1
2
x+2分别交于点D、E(E在D的上方),且△PDE为等腰直角三角形?若存在,求t的值及点P的坐标;若不存在,请说明原因.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在等腰三角形ABC中,∠B=90°,AB=BC=4米,点P以1米/分的速度从A点出发移动到B点,同时点Q以2米/分的速度从点B移动到C点(当一个点到达后全部停止移动).
(1)设经过x分钟后,△PCB的面积为y1,△QAB的面积为y2,求出y1,y2关于x的函数关系式;
(2)同时移动多少分钟,这两个三角形的面积相等?
(3)移到时间在什么范围内时,①△PCB的面积大于△QAB的面积?②△PCB的面积小于△QAB的面积?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知点A、B分别在x轴、y轴上,AB=12,∠OAB=30°,经过A、B的直线l以每秒1个单位的速度向下作匀速平移运动,与此同时,点P从点B出发,在直线l上以每秒1个单位的速度沿直线l向右下方向作匀速运动.设它们运动的时间为t秒.
(1)直接写出A、B点坐标是A点______,B点______;
(2)用含t的代数式求出表示点P的坐标;
(3)过O作OC⊥l于C,过C作CD⊥x轴于D,问:t为何值时,以P为圆心、1为半径的圆与直线OC相切?并写出此时⊙P与直线CD的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某种铂金饰品在甲、乙两个商店销售.甲店标价477元/克,按标价出售,不优惠.乙店标价530元/克,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.
(1)分别写出到甲、乙商店购买该种铂金饰品所需费用y(元)和重量x(克)之间的函数关系式;
(2)李阿姨要买一条重量不少于4克且不超过10克的此种铂金饰品,到哪个商店购买最合算?

查看答案和解析>>

同步练习册答案