精英家教网 > 初中数学 > 题目详情
9.在△ABC中,AB=AC,∠BAC=90°,点E在AC边上,BE平分∠ABC,CD⊥BE于点D,连接AD,若BE=10,则AD的长是5.

分析 延长BA、CD相交于点F,根据同角的余角相等求出∠F=∠AEB,再利用“角角边”求出△ABE和△ACF全等,根据全等三角形对应边相等可得CF=BE,再利用“角边角”证明△BCD和△BFD全等,根据全等三角形对应边相等可得CD=DF,最后根据直角三角形斜边上的中线等于斜边的一半可得AD=$\frac{1}{2}$CF.

解答 解:如图,延长BA、CD相交于点F,
∵∠BAC=90°,CD⊥BE,
∴∠ABE+∠AEB=90°,
∠ABE+∠F=90°,
∴∠F=∠AEB,
在△ABE和△ACF中,$\left\{\begin{array}{l}{∠F=∠AEB}\\{∠BAE=∠CAF=90°}\\{AB=AC}\end{array}\right.$,
∴△ABE≌△ACF(AAS),
∴CF=BE=10,
∵BE平分∠ABC,
∴∠BCD=∠DBF,
在△BCD和△BFD中,$\left\{\begin{array}{l}{∠BCD=∠DBF}\\{BD=BD}\\{∠BDC=∠BDF=90°}\end{array}\right.$,
∴△BCD≌△BFD(ASA),
∴CD=DF,
又∵∠CAF=∠BAC=90°,
∴AD=$\frac{1}{2}$CF=$\frac{1}{2}$×10=5.
故答案为:5.

点评 本题考查了全等三角形的判定与性质,等腰直角三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握三角形全等的判定方法并作辅助线构造出全等三角形是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.在各个内角都相等的多边形中,一个内角是一个外角的4倍,则这个多边形是几边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图1,在四边形ABCD中,连接AC,且AC=CD,点E在△ACD内,连接AE,BE,CE,DE,已知AB=BE,∠ACE+∠ADE=90°,∠ACD=∠ABE=90°.
(1)①试判断∠BAC和∠EAD之间的数量关系,并说明理由;
②求证:△ABC∽△AED;
③若CE=2,DE=3,求AE的长度;
(2)把题干中“AC=CD和AB=BE”改为“$\frac{CD}{AC}$=$\frac{BE}{AB}$=x”,已知△ABC∽△AED,CE=1,DE=6,BE=3,求x的值;
(3)如图2,把题干中“∠ACD=∠ABE=90°”改为“∠ACD=∠ABE=135°”,并过点A作AF⊥DC,交DC的延长线于点F,若△ABC∽△AED,CE=a,DE=b,AE=c,求a,b,c三者满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.某加工厂以每吨3000元的价格购进50吨原料进行加工.若进行粗加工,每吨加工费用为600元,需$\frac{1}{3}$天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需$\frac{1}{2}$天,每吨售价4500元.现将这50吨原料全部加工完.设其中粗加工x吨,获利y元.
(1)请完成表格并求出y与x的函数关系式(不要求写自变量的范围);
表一
 粗加工数量/吨 3 7 x
 精加工数量/吨 4743 50-x 
表二
粗加工数量/吨37x
粗加工获利/元12002800400x
精加工获利/元2820025800600(50-x)
(2)如果必须在20天内完成,如何安排生产才能获得最大利润,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.$\frac{14}{3}$是(  )
A.整数B.无理数C.有理数D.自然数

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.(1)如图1,△ABC中,∠BAC=90°,AD⊥BC于D,BD=8,CD=2,求AD的长;
(2)如图2,等边△ABC中,P为内部一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,若AD=1,CF=2,BE=3,求△ABC的边长;
(3)如图3,△ABC中,P为内部一点,PD⊥AB于D,PE⊥BC于E,PF⊥AC于F,G、H、I分别为PD、PE、PF延长线上一点,若AG=CH,BH=AI,求证:BG=IC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知k为自然数,把下列各式分解因式:
(x-y)2k+(y-x)2k+2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程:15x-3=3(x-4)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,两条平行的公路AB与CD之间有一个斜坡AC,在C处垂直树立着一个路灯CE,灯杆CE上有两根灯臂EF和EG,两灯臂上的路灯F、G分别照明AB、CD两条公路.已知AC=CE=2米,EG=1米,∠BAC=120°,∠FEG=135°.EF∥AB,分别求路灯F到公路AB、路灯G到公路CD的距离(结果精确到0.1米.参考数据:$\sqrt{3}$≈1.73,$\sqrt{2}$≈1.41).

查看答案和解析>>

同步练习册答案