精英家教网 > 初中数学 > 题目详情
若x1,x2是关于x的方程x2-kx+5(k-5)=0的两个正实数根,且满足2x1+x2=7,则实数k的范围是(  )
分析:根据一元二次方程根与系数的关系和根据方程有两个正根求出k的取值范围,再结合2x1+x2=7求出k的取值.
解答:解:∵关于x的方程x2-kx+5(k-5)=0的两个正实数根,
k2-4×5(k-5)≥0
5(k-5)>0
k>0

解得:k的取值范围为k>5.
方程x2-kx+5(k-5)=0可化为(x-5)(x-k+5)=0,
解得x=5或x=k-5.
①x1=5或x2=k-5时,代入2x1+x2=7得,2×5+k-5=7,则k=2;
②x2=5或x1=k-5时,代入2x1+x2=7得,2k-10+5=7,则k=6.
∵k>5,
∴k=6.
故选A.
点评:本题考查了一元二次方程根的情况与判别式△的关系和一元二次方程根与系数的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根;
(4)x1+x2=-
b
a

(5)x1x2=
c
a
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

7、若x1、x2是关于x的方程x2+bx-3b=0的两个根,且x12+x22=7.那么b的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1和x2是关于x的方程x2-(a-1)x-b2+b-1=0的两个相等的实数根,则x1=x2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

先阅读,再填空解答:
方程x2-3x-4=0的根为x1=-1,x2=4,x1+x2=3,x1x2=-4;
方程3x2+10x+8=0的根为x1=-2,x2=-
4
3
x1+x2=-
10
3
x1x2=
8
3

(1)方程2x2+x-3=0的根是x1=
-
3
2
-
3
2
,x2=
1
1
,x1+x2=
-
1
2
-
1
2
,x1x2=
-
3
2
-
3
2

(2)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个实数根,那么x1+x2,x1x2与系数a、b、c的关系是:x1+x2=
-
b
a
-
b
a
,x1x2=
c
a
c
a

(3)当你轻松解决以上问题时,试一试下面这个问题:甲、乙两同学解方程x2+px+q=0时,甲看错了一次项系数,得根2和7,乙看错了常数项,得根1和-10,则原方程中的p、q到底是多少?你能写出原来的方程吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

若x1和x2是关于x的方程x2-(a-1)x-
14
b2+b-1=0的两个相等的实数根,则x1=x2=
0
0

查看答案和解析>>

同步练习册答案