精英家教网 > 初中数学 > 题目详情

我们知道“在三角形每一顶点处各取一个外角,它们的和就是这个三角形的外角和”.如图7-36,完成下列问题.

图7-36

(1)你能求出三角形的外角和等于多少吗?证明你的结论.

(2)如果将三角形三条边都向两边延长,并在每两条延长线上任取两点连结起来,那么在原三角形外又得到三个新三角形,如图所示,猜想∠A、∠B、∠C、∠D、∠E、∠F的和是多少?

(3)请用(1)的结论证明(2)的猜想.

(4)对于(2)的证明你还有其他的方法吗?请写出来与同伴交流.

答案:(1)三角形外角和等于360°.

已知:如图△ABC,∠4,∠5,∠6是外角.

求证:∠4+∠5+∠6=360°.

证明:∵∠4是外角,∴∠2+∠3=∠4.

同理,∠1+∠3=∠5,∠2+∠1=∠6,

∴∠4+∠5+∠6=(∠2+∠3)+(∠1+∠3)+(∠2+∠1)=2(∠1+∠2+∠3).

∵∠1+∠2+∠3=180°,

∴∠4+∠5+∠6=2×180°=360°.

(2)如图,∠A+∠B+∠C+∠D+∠E+∠F=360°.

(3)∵∠4是△ABN的外角(已知),

∴∠A+∠B=∠4(三角形任一外角等于与其不相邻的两内角和).

同理,∠C+∠D=∠5,∠E+∠F=∠6,

∴∠4+∠5+∠6=(∠A+∠B)+(∠C+∠D)+(∠E+∠F).

由(1)得∠4+∠5+∠6=360°,

∴∠A+∠B+∠C+∠D+∠E+∠F=360°(等量代换).

(4)∵∠A+∠B+∠ANB=180°,∠C+∠D+∠CHD=180°,∠E+∠F+∠EMF=180°,

∴∠A+∠B+∠ANB+∠C+∠D+∠CHD+∠E+∠F+∠EMF=180°×3=540°.

∵∠ANB=∠HNM,∠CHD=∠MHN,∠EMF=∠HMN,∠HNM+∠MHN+∠HMN=180°,

∴∠A+∠B+∠C+∠D+∠E+∠F=360°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为
 

(A)2、点P,(B)
1
2
、点P,( C)2、点O,(D)
1
2
、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题精英家教网
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

科目:初中数学 来源:学习周报 数学 沪科八年级版 2009-2010学年 第19~26期 总175~182期 沪科版 题型:044

我们知道在三角形每一个顶点处各取一个外角,它们的和就是这个三角形的外角和.

(1)如图,求出△MNP的外角和,并证明你的结论;

(2)猜想∠A、∠B、∠C、∠D、∠E、∠F的和是多少;

(3)请用(1)的结论证明(2)的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

我们知道“在三角形每一顶点处各取一个外角,它们的和就是这个三角形的外角和”.如图7-36,完成下列问题.

图7-36

(1)你能求出三角形的外角和等于多少吗?证明你的结论.

(2)如果将三角形三条边都向两边延长,并在每两条延长线上任取两点连结起来,那么在原三角形外又得到三个新三角形,如图所示,猜想∠A、∠B、∠C、∠D、∠E、∠F的和是多少?

(3)请用(1)的结论证明(2)的猜想.

(4)对于(2)的证明你还有其他的方法吗?请写出来与同伴交流.

查看答案和解析>>

科目:初中数学 来源:《第4章 相似三角形》2009年综合测试(B卷)(解析版) 题型:解答题

我们知道:如果两个三角形不仅是相似三角形,而且每对对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.
(1)选择:如图1,点O是等边三角形PQR的中心,P′、Q′、R′分别是OP、OQ、OR的中点,则△P′Q′R′与△PQR是位似三角形.此时,△P′Q′R′与△PQR的位似比、位似中心分别为______;
(A)2、点P,(B)、点P,( C)2、点O,(D)、点O;
(2)如图2,用下面的方法可以画△AOB的内接等边三角形.阅读后证明相应问题.
画法:
①在△AOB内画等边三角形CDE,使点C在OA上,点D在OB上;
②连接OE并延长,交AB于点E′,过点E′作E′C′∥EC,交OA于点C′,作E′D′∥ED,交OB于点D′;
③连接C′D′,则△C′D′E′是△AOB的内接三角形.
求证:△C′D′E′是等边三角形.

查看答案和解析>>

同步练习册答案