精英家教网 > 初中数学 > 题目详情

如图,抛物线与x轴交于点A(—2,0),交y轴于点B(0,).直过点A与y轴交于点C,与抛物线的另一个交点是D.

(1)求抛物线与直线的解析式;

(2)设点P是直线AD下方的抛物线上一动点(不与点A、D重合),过点P作 y轴的平行线,交直线AD于点M,作DE⊥y轴于点E.探究:是否存在这样的点P,使四边形PMEC是平行四边形?若存在请求出点P的坐标;若不存在,请说明理由;

(3)在(2)的条件下,作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m与x的函数关系式,并求出m的最大值.

 

【答案】

(1),;(2)存在,(2,-3)和(4,); (3),当x=3时,m的最大值是15.

【解析】

试题分析:(1)将A,B两点坐标分别代入求出二次函数解析式;将A点坐标代入求出直线解析式;

(2)首先假设出P,M点的坐标,进而得出PM的长,将两函数联立得出D点坐标,进而得出CE的长,利用平行四边形的判定得出PM=CE,得出等式方程求出即可;

(3)利用勾股定理得出DC的长,进而根据△PMN∽△CDE,得出两三角形周长之比,求出m与x的函数关系,再利用配方法求出二次函数最值即可.

试题解析:(1)∵经过点A(—2,0)和B(0,

,解得.

∴抛物线的解析式是.

∵直线经过点A(—2,0),∴,解得:.

∴直线的解析式是.

(2)存在.

设P的坐标是(x,),则M的坐标是(x,),

.

解方程得:.

∵点D在第三象限,∴点D的坐标是(8,).

令x=0得点C的坐标是(0,).

.

∵PM∥y轴,∴要使四边形PMEC是平行四边形,必有PM=CE,即.

解这个方程得:x1=2,x2=4.

当x=2时,y=—3; 当x=4时,y=.

∴直线AD上方的抛物线上存在这样的点P,使四边形PMEC是平行四边形,点P的坐标是(2,-3)和(4,).

(3)在Rt△CDE中,DE=8,CE=6  由勾股定理得:DC=10.

∴△CDE的周长是24.

∵PM∥y轴,∴∠PMN=∠DCE.

∵∠PNM=∠DEC,∴△PMN∽△CDE.

,即.

化简整理得:m与x的函数关系式是:.

<0,∴m有最大值,当x=3时,m的最大值是15.

考点:1.二次函数综合题;2.单动点问题;3.曲线上点的坐标与方程的关系;4.平行四边形的判定;5.勾股定理;6.相似三角形的判定和性质;7.由实际问题列函数关系式;8.二次函数的最值.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于C(0,3),M是抛物线对称轴上的任意一点,则△AMC的周长最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与x轴交于A、B(6,0)两点,且对称轴为直线x=2,与y轴交于点C(0,-4).
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一个动点,连接MA、MC,当△MAC的周长最小时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点F的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案