精英家教网 > 初中数学 > 题目详情
已知方程组
y2=2x(1)
y=kx+1 (2)
有两个不相等的实数解,
(1)求k的取值范围;  
(2)若方程组的两个实数解为
x=x1
y=y1
 和
x=x2
y=y2
,求出使得x1+x1x2+x2=1的k的值.
分析:(1)由于方程组
y2=2x(1)
y=kx+1 (2)
有两个不相等的实数解,首先通过消元得到一个关于x或y的方程,然后利用判别式是正数即可求解;
(2)由于方程组有两个不相等的实数解,一由此得到x1,x2是k2x2+(2k-2)x+1=0式的两个根,然后利用根与系数的关系即可求解.
解答:解:(1)将②代入①整理,得k2x2+(2k-2)x+1=0(*)(2分),
∵方程组有两个不相等的实数解,即(*)式有两个不相等的根,
∴△>0
由△=(2k-2)2-4k2>0?k<
1
2
,(2分)
又因为(*)式有两个不相等的根,k≠0,
k<
1
2
且k≠0(1分);

(2)∵方程组有两个不相等的实数解,
∴x1,x2是(*)式的两个根,
∴有x1+x2=-
2k-2
k2
x1x2=
1
k2
(2分),
由题意得-
2k-2
k2
+
1
k2
=1(1分),
∴k=-3或k=1(1分)
k<
1
2

∴k=1舍去,k=-3为所求.(1分)
点评:此题主要考查了二元二次方程组的解的讨论及利用方程的解求代数式的值,首先利用判别式即可确定k值,然后利用根与系数的关系即可求出字母的值.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知方程组
y2=4x
y=2x+m
有两组实数解
x=x1
y=y1
x=x2
y=y2
,且x1≠x2,x1x2≠0,设n=-
2
x1
-
2
x2

(1)求m的取值范围;
(2)用含m的代数式表示n;
(3)是否存在这样的m的值,使n的值为-2?如果存在,求出这样的m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程组
y2=nx
y=2x+m
(其中m、n均为不为零的常数)有一组实数解
(1)确定
m
n
的值;
(2)若已知n=4,试解这个方程组.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知方程组
y2=4x
y=2x+m
有两组实数解
x=x1
y=y1
x=x2
y=y2
,且x1≠x2,x1x2≠0,设n=-
2
x1
-
2
x2

(1)求m的取值范围;
(2)用含m的代数式表示n;
(3)是否存在这样的m的值,使n的值为-2?如果存在,求出这样的m的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:拱墅区模拟 题型:解答题

已知方程组
y2=2x(1)
y=kx+1 (2)
有两个不相等的实数解,
(1)求k的取值范围;  
(2)若方程组的两个实数解为
x=x1
y=y1
 和
x=x2
y=y2
,求出使得x1+x1x2+x2=1的k的值.

查看答案和解析>>

同步练习册答案