精英家教网 > 初中数学 > 题目详情
在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是【   】
A.∠BDC =∠BCDB.∠ABC =∠DABC.∠ADB =∠DACD.∠AOB =∠BOC
C

试题分析:根据等腰梯形的判定,逐一作出判断:

A.由∠BDC =∠BCD只能判断△BCD是等腰三角形,而不能判断梯形ABCD是等腰梯形;
B.由∠ABC =∠DAB和AD∥BC,可得∠ABC =∠DAB=900,是直角梯形,而不能判断梯形ABCD是等腰梯形;
C.由∠ADB =∠DAC,可得AO=OD,由AD∥BC,可得∠ADB =∠DBC,∠DAC =∠ACB,从而得到∠DBC =∠ACB,所以OB=OC,因此AC=DB,根据对角线相等的梯形是等腰梯形可判定梯形ABCD是等腰梯形;
D.由∠AOB =∠BOC只能判断梯形ABCD的对角线互相垂直,而不能判断梯形ABCD是等腰梯形。
故选C。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD、BEFG均为正方形.

(1)如图1,连接AG、CE,试判断AG和CE的数量关系和位置关系并证明.
(2)将正方形BEFG绕点B顺时针旋转β角(0°<β<180°),如图2,连接AG、CE相交于点M,连接MB,当角β发生变化时,∠EMB的度数是否发生变化?若不变化,求出∠EMB的度数;若发生变化,请说明理由.
(3)在(2)的条件下,过点A作AN⊥MB交MB的延长线于点N,请直接写出线段CM与BN的数量关系      .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。

原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。
(1)思路梳理
∵AB=CD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线。
根据    ,易证△AFG≌    ,得EF=BE+DF。
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系    时,仍有EF=BE+DF。
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,菱形ABCD中,,AB=4,则以AC为边长的正方形ACEF的周长为【   】
A.14B.15C.16D.17

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点

(1)求证:△ABM≌△DCM
(2)判断四边形MENF是什么特殊四边形,并证明你的结论;
(3)当AD:AB=       _时,四边形MENF是正方形(只写结论,不需证明)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,?ABCD中,点E、F分别在AD、BC上,且AE=CF.求证:BE=DF.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对角线互相   的平行四边形是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD中,AD∥BC,AB∥DE,∠DEC=∠C,求证:梯形ABCD是等腰梯形.

查看答案和解析>>

同步练习册答案