精英家教网 > 初中数学 > 题目详情
(2013•武汉)如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点.若∠CDE=x°,∠ECD=y°,⊙B的半径为R,则
DE
的长度是(  )
分析:点C、D、E都在⊙P上,由圆周角定理可得:∠DPE=2y°;然后在四边形BDPE中,求出∠B;最后利用弧长公式计算出结果.
解答:解:根据题意,由切线长定理可知:PC=PD=PE,
即点C、D、E在以P为圆心,PC长为半径的⊙P上,
由圆周角定理得:∠DPE=2∠ECD=2y°.
如图,连接BD、BE,则∠BDP=∠BEP=90°,
在四边形BDPE中,∠B+∠BDP+∠DPE+∠BEP=360°,
即:∠B+90°+2y°+90°=360°,
解得:∠B=180°-2y°.
DE
的长度是:
(180-2y)πR
180
=
π(90-y)R
90

故选B.
点评:本题考查圆的相关性质.解题关键是确定点C、D、E在⊙P上,从而由圆周角定理得到∠DPE=2∠ECD=2y°.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•武汉)如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2
(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2;请直接写出旋转中心的坐标;
(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图是由四个大小相同的正方体组合而成的几何体,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•武汉)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=
kx
(k<0)的图象上,则k等于
-12
-12

查看答案和解析>>

同步练习册答案