精英家教网 > 初中数学 > 题目详情
3.如图,△ABC中,AC的垂直平分线DE交AC于E.交∠ABC的平分线于D,DF⊥BC于F.
(1)求证:①BC-AB=2CF;②BC+AB=2BF;
(2)若∠ABC=60°,求∠ADE的度数.

分析 (1)①在BC上截取BM=BA,连接DM,由SAS证明△ABD≌△MBD,AD=MD,由线段垂直平分线的性质得出AD=CD,因此MD=CD,由等腰三角形的性质得出MF=CF,即可得出结论;②由BC=BF+CF,CF=MF,AB=MB,即可得出结论;
(2)由等腰三角形的性质得出∠ADE=∠CDE=$\frac{1}{2}$∠ADC,求出∠BDF=60°,由全等三角形的性质和等腰三角形的性质得出∠ADB=∠MDB,∠MDF=∠CDF,得出∠ADB+∠CDF=∠MDB+∠MDF=∠BDF=60°,因此∠ADC=120°,即可得出结果.

解答 (1)证明:①在BC上截取BM=BA,连接DM、CD,如图所示:
∵BD平分∠ABC,
∴∠1=∠2,
在△ABD和△MBD中,$\left\{\begin{array}{l}{BA=BM}&{\;}\\{∠1=∠2}&{\;}\\{BD=BD}&{\;}\end{array}\right.$,
∴△ABD≌△MBD(SAS),
∴AD=MD,
∵AC的垂直平分线DE交AC于E,
∴AD=CD,
∴MD=CD,
∵DF⊥BC,
∴MF=CF,
∵BC=BM+MF+CF,AB=BM,
∴BC-AB=CM=2CF;
②∵BC=BF+CF,CF=MF,AB=MB,
∴BC+AB=BF+CF+AB=BF+BM+MF=2BF;
(2)解:∵AD=CD,DE⊥AC,
∴∠ADE=∠CDE=$\frac{1}{2}$∠ADC,
∵∠1=∠2=$\frac{1}{2}$∠ABC=30°,DF⊥BC,
∴∠BDF=90°-30°=60°,
∵△ABD≌△MBD,MD=CD,DF⊥BC,
∴∠ADB=∠MDB,∠MDF=∠CDF,
∴∠ADB+∠CDF=∠MDB+∠MDF=∠BDF=60°,
∴∠ADC=2×60°=120°,
∴∠ADE=$\frac{1}{2}$∠ADC=60°.

点评 本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、线段垂直平分线的性质以及角平分线的定义;通过作辅助线证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.下面解方程组的过程对吗?如果不对,应怎样改正?
解方程组:$\left\{\begin{array}{l}{\frac{x}{4}+\frac{y}{3}=3}\\{3(x-4)-2(y-1)=-1}\end{array}\right.$
解:原方程组可化为$\left\{\begin{array}{l}{3x+4y=3,①}\\{3x-2y=9.②}\end{array}\right.$
①-②,得6y=-6,解得y=-1.③
把③代入①,得x=$\frac{7}{3}$,所以原方程组的解为$\left\{\begin{array}{l}{x=\frac{7}{3}}\\{y=-1}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.在下列各方程后面的括号内分别给出了一组数,从中找出方程的解.
(1)$\frac{1}{2}$x2-2=44(2$\sqrt{21}$,2$\sqrt{23}$,-2$\sqrt{21}$,-2$\sqrt{23}$)
(2)(x-2)2=4x(4+2$\sqrt{3}$,4-2$\sqrt{3}$,-4+2$\sqrt{3}$,-4-2$\sqrt{3}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知如图:△ABC和△DAE中,AB=AD,∠BAD=∠BCE=135°,BC的延长线交DE于点F,BF⊥DE.写出线段DE、CE、BC之间的一个等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在等腰直角三角形ABC中,∠ACB=90°,点D在边AB上,连接CD,过点A,C分别作AB,CD的垂线,两垂线交于点E,连接DE.
(1)求证:△CDE是等腰直角三角形;
(2)若AD=2,BD=3,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知直线y1=2x+1与抛物线y2=ax2+bx+c,抛物线y2与y轴交于点A(0,5),与x轴分别交于B(1,0),C(5,0)两点.
(1)求抛物线的解析式并在同一坐标系中画出直线和抛物线的示意图;
(2)结合图象回答:
①y2≥0时,x的取值范围;
②0<x<5时,y2的取值范围;
③y2≥y1时,x的取值范围;
④关x于的方程ax2+bx+c=k有两个不等实根,k的取值范围是什么?
(3)将抛物线在x轴下方部分沿x轴翻折到轴上方后,B,C间的部分向左平移n(n>2)个单位后得到的图象记为图象G,同时将y1向上平移n个单位,请结合图象回答:当平移后的直线与图象有公共点时,求n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.解方程
(1)x2+4x-2=0;
(2)3(x-2)2=x(x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.计算:$\sqrt{16}$$+(\frac{1}{2})^{-2}$×cos60°-tan45°-12016

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.已知x=2是方程2x+a=1的解,则a的值是(  )
A.3B.4C.-5D.-3

查看答案和解析>>

同步练习册答案