1£®ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬A£¬B£¬C£¬Èýµã×ø±ê·Ö±ðΪA£¨-6£¬3£©£¬B£¨-4£¬1£©£¬C£¨-1£¬1£©£®
£¨1£©Èçͼ1£¬Ë³´ÎÁ¬½ÓAB£¬BC£¬CA£¬µÃ¡÷ABC£®
¢ÙµãA¹ØÓÚxÖáµÄ¶Ô³ÆµãA1µÄ×ø±êÊÇ£¨-6£¬-3£©£¬µãB¹ØÓÚyÖáµÄ¶Ô³ÆµãB1µÄ×ø±êÊÇ£¨4£¬1£©£»
¢Ú»­³ö¡÷ABC¹ØÓÚÔ­µã¶Ô³ÆµÄ¡÷A2B2C2£»
¢Ûtan¡ÏA2C2B2=$\frac{2}{5}$£»
£¨2£©ÀûÓÃËıßÐεIJ»Îȶ¨ÐÔ£¬½«µÚ¶þÏóÏÞ²¿·ÖÓÉСÕý·½ÐÎ×é³ÉµÄÍø¸ñ£¬±ä»¯ÎªÈçͼ2ËùʾµÄÓÉСÁâÐÎ×é³ÉµÄÍø¸ñ£¬Ã¿¸öСÁâÐεı߳¤ÈÔΪ1¸öµ¥Î»³¤¶È£¬ÇÒ½ÏСÄÚ½ÇΪ60¡ã£¬Ô­À´µÄ¸ñµãA£¬B£¬C·Ö±ð¶ÔÓ¦ÐÂÍø¸ñÖеĸñµãA¡ä£¬B¡ä£¬C¡ä£¬Ë³´ÎÁ¬½ÓA¡äB¡ä£¬B¡äC¡ä£¬C¡äA¡ä£¬µÃ¡÷A¡äB¡äC¡ä£¬Ôòtan¡ÏA¡äC¡äB¡ä=$\frac{\sqrt{3}}{4}$£®

·ÖÎö £¨1£©¢ÙÖ±½ÓµÃµ½¶Ô³ÆµãµÄ×ø±ê¼´¿É£»
¢Ú»­Í¼£»
¢Û¸ù¾ÝÕýÇеĶ¨Ò壺µÈÓڶԱ߱ÈÁڱߣ¬¼´tan¡ÏA2B2C2=$\frac{2}{5}$£»
£¨2£©×÷¸ßÏßA'E£¬¹¹½¨Ö±½ÇÈý½ÇÐΣ¬ÀûÓù´¹É¶¨ÀíÇóA'EºÍEC'µÄ³¤£¬¿ÉµÃ½áÂÛ£®

½â´ð ½â£º£¨1£©¢ÙµãA¹ØÓÚxÖáµÄ¶Ô³ÆµãA1µÄ×ø±êÊÇ£¨-6£¬-3£©£¬µãB¹ØÓÚyÖáµÄ¶Ô³ÆµãB1µÄ×ø±êÊÇ£¨4£¬1£©£»
¹Ê´ð°¸Îª£º£¨-6£¬-3£©£¬£¨4£¬1£©£»
¢ÚÈçͼ1Ëùʾ£»
¢Ûtan¡ÏA2B2C2=$\frac{2}{5}$£»
¹Ê´ð°¸Îª£º$\frac{2}{5}$£»
£¨2£©Èçͼ2£¬¹ýA'×÷A'E¡ÍB¡äC¡äÓÚE£¬ÑÓ³¤C¡äB¡äÖÁD£¬Ê¹DC'=5£¬Á¬½ÓA'D£¬
Rt¡÷A¡äEDÖУ¬¡ß¡ÏA¡äDE=60¡ã£¬A'D=2£¬
¡àDE=1£¬A'E=$\sqrt{3}$£¬
¡àEC'=5-1=4£¬
Rt¡÷A¡äEC¡äÖУ¬tan¡ÏA'C'B'=$\frac{A¡äE}{EC¡ä}$=$\frac{\sqrt{3}}{4}$£¬
¹Ê´ð°¸Îª£º$\frac{\sqrt{3}}{4}$£®

µãÆÀ ±¾Ì⿼²éÁ˹ØÓÚÔ­µã¡¢xÖá¡¢yÖá¶Ô³Æ£¬ÁâÐεÄÐÔÖÊ£¬½âÖ±½ÇÈý½ÇÐΣ¬ÊìÁ·ÕÆÎÕÕýÇеĶ¨ÒåÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èçͼ£¬AD¡ÎBC£¬AB¡ÎCD£¬¡Ï1=70¡ã£¬¡Ï2=110¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®¼ÆË㣺£¨-2014£©¡Â£¨-56£©¡Á02015+£¨-$\frac{7}{8}$£©¡Â£¨1$\frac{3}{4}$-$\frac{7}{8}$-$\frac{7}{12}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®½â·½³Ì×é$\left\{\begin{array}{l}{\frac{x}{3}+\frac{y}{2}=8}\\{3x-2y=7}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®½â²»µÈʽ×飺$\left\{\begin{array}{l}{x-£¨x-3£©¡Ü4}\\{\frac{1-2x}{4}£¼1-x}\end{array}\right.$£¬²¢°Ñ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬AD¡ÍBC£¬´¹×ãΪD£¬¡ÏB=60¡ã£¬¡ÏC=45¡ã£¬AC=3$\sqrt{2}$£®
£¨1£©ÇóADµÄ³¤£»
£¨2£©Çó¡÷ABCµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÔÚÏÂÁжþ´Î¸ùʽÖУ¬Óë2$\sqrt{a}$ÊÇͬÀà¶þ´Î¸ùʽµÄÊÇ£¨¡¡¡¡£©
A£®$\sqrt{2a}$B£®$\sqrt{9a}$C£®a$\sqrt{2}$D£®$\sqrt{4{a}^{2}}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬¡ÏB=45¡ã£¬¡ÏC=30¡ã£¬AC=6£¬ÇóAB¡¢BCµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬±ß³¤ÎªaµÄÕý·½ÐÎABCD±»Á½ÌõÓë±ßƽÐеÄÏ߶ÎEF¡¢GH·Ö¸î³ÉËĸöС¾ØÐΣ¬EFÓëGH½»ÓÚµãP£¬Á¬½ÓAF¡¢AH£®
£¨1£©ÈôBF=DH£¬ÇóÖ¤£ºAF=AH£®
£¨2£©Èô¡ÏFAH=45¡ã£¬Çó¡÷FCHµÄÖܳ¤£¨Óú¬aµÄ´úÊýʽ±íʾ£©£®
£¨3£©ÈôRt¡÷GBFµÄÖܳ¤Îªa£¬Çó¾ØÐÎEPHDµÄÃæ»ý£¨Óú¬aµÄ´úÊýʽ±íʾ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸