精英家教网 > 初中数学 > 题目详情
请写出一个二次函数,使它同时具有如下性质:
①图象关于直线对称;②当x=2时,y>0;③当x=-2时,y<0.
答:           
答案不唯一,如

试题分析:根据二次函数的性质依次分析各小题的要求即可得到结果.
答案不唯一,如
点评:二次函数的性质是初中数学的重点,是中考常见题,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,一抛物线经过点A、B、C,点 A(?2,0),点B(0,4),点C(4,0),该抛物线的顶点为D.

(1)求该抛物线的解析式及顶点D坐标;
(2)如图,若P为线段CD上的一个动点,过点P作PM⊥x轴于点M,求四边形PMAB的面积的最大值和此时点P的坐标;
(3)过抛物线顶点D,作DE⊥x轴于E点,F(m,0)是x轴上一动点,若以BF为直径的圆与线段DE有公共点,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线=-+5经过点C(4,0),与轴交于另一点A,与轴交于点B.

(1)求点A、B的坐标;
(2)P是轴上一点,△PAB是等腰三角形,试求P点坐标;
(3)若·Q的半径为1,圆心Q在抛物线上运动,当·Q与轴相切时,求·Q上的点到点B的最短距离.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知抛物线的顶点为坐标原点O,矩形ABCD的顶点A、D在抛物线上,且AD平行x轴,交y轴于点F,AB的中点E在x轴上,B点的坐标为(2,1),点P(a,b)在抛物线上运动.(点P异于点O).

(1)求此抛物线的解析式;
(2)过点P作CB所在直线的垂线,垂足为点R;
①求证:PF=PR
②是否存在点P,使得△PFR为等边三角形;若存在,求出点P的坐标,若不存在,请说明理由.
③延长PF交抛物线于另一点Q,过Q作BC所在直线的垂线,垂足为点S,试判断△RSF的形状.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与y轴交于点C,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且.点E为线段BC上的动点(点E不与点B,C重合),以E为顶点作,射线ET交线段OB于点F.

(1) 求出此抛物线函数表达式,并直接写出直线BC的解析式;
(2)求证:
(3)当为等腰三角形时,求此时点E的坐标;
(4)点P为抛物线的对称轴与直线BC的交点,点M在x轴上,点N在抛物线上,是否存在以点A、M、N、P为顶点的平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线上的一点,以点A、B、D为顶点作正方形.

(1)若图①仅看作符合条件的一种情况,求出所有符合条件的点D的坐标;
(2)在图①中,若点P以每秒1个单位长度的速度沿直线从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.试探究:在移动过程中,△PAQ的面积最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.

(1)求抛物线的函数关系式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQ∥y轴交直线BC于点Q.
①当x取何值时,线段PQ长度取得最大值?其最大值是多少?
②是否存在点P,使△OAQ为直角三角形?若存在,求点P坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

大润发超市进了一批成本为8元/个的文具盒. 调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:

(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒的定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润为1200元?
(3)若该超市每星期销售这种文具盒的销售量不少于115个,且单件利润不低于4元(x为整数),当每个文具盒定价多少元时,超市每星期利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知二次函数与一次函数的图象交于,则能使成立的的取值范围是
A.B.
C.D.

查看答案和解析>>

同步练习册答案