精英家教网 > 初中数学 > 题目详情
己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD交于点G.

(1)求证:BE=DF;
(2)当时,求证:四边形BEFG是平行四边形.
证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠ABC=∠ADF,
∵∠BAF=∠DAE,∴∠BAF﹣∠EAF=∠DAE﹣∠EAF,即:∠BAE=∠DAF。
∴△BAE≌△DAF(ASA)。∴BE=DF。
(2)∵四边形ABCD是菱形,∴AD∥BC。∴△ADG∽△EBG。∴
又∵BE="DF" ,,∴。∴GF∥BC。
∴∠DGF=∠DBC=∠BDC。∴DF=GF。
又∵BE="DF" ,∴BE=GF。∴四边形BEFG是平行四边形。
(1)由菱形的性质和∠BAF=∠DAE,证得△ABF与△AFD全等后即可证得结论。(2)由AD∥BC证得△ADG∽△EBG,从而;由和BE=DF即可得证得。从而根据平行线分线段成比例定理证得FG∥BC,进而得到∠DGF=∠DBC=∠BDC,根据等腰三角形等角对等边的判定和BE="DF" ,证得BE=GF。利用一组对边平行且相等即可判定平行四边形。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在梯形ABCD中,ADBC, AB = CD,EAD的中点,AD=4,BC=6,点PBC边上的动点(不与点B重合),PEBD相交于点O,设PB的长为x.

(1) 当P点在BC边上运动时,求证:△BOP∽△DOE.
(2) 当x = (   )时,四边形ABPE是平行四边形;当x = (   )时,四边形ABPE是直角梯形;
(3)当PBC上运动的过程中,四边形ABPE会不会是等腰梯形?试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在直角坐标平面中,O为原点,A(0,6),B(8,0)。点P从点A出发,以每秒2个单位长度的速度沿射线AO方向运动,点Q从点B出发,以每秒一个单位长度的速度沿x轴正方向运动,P,Q两动点同时出发,设移动时间为t(t>0)秒.
(1)在点P,Q的运动过程中,当点P在AO的延长线上时,若△POQ与△AOB相似,求t的值;
(2)如图2,当直线PQ与线段AB交于点M,且时,求直线PQ的解析式;
(3)以点O为圆心,OP长为半径画圆⊙O,以点B为圆心,BQ长为半径画⊙B,讨论⊙O和⊙B的位置关系,并直接写出相应t的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为(        ).
A.60°               B.70°                 C.80°                  D.90°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=8,BC=7,AC=6,有一动点P从A沿AB移动到B,移动速度为2单位/秒,有一动点Q从C沿CA移动到A,移动速度为l单位/秒,问两动点同时出发,移动多少时间时,△PQA与△ABC相似.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

扇形AOB中,OA、OB是半径,且∠AOB=90°,OA=6,点C是AB上异于A、B的动点。过点C作CD⊥OA于点D,作CE⊥OB于点E,连接DE,点G、H在线段DE上,且DG=GH=HE.
(1)求证:OG=CH;
(2)当点C在AB上运动时,线段DE的长是否为定值?若为定值,请求出该值;否则,请说明理由;
(3)设CH,CD,求之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于(    )
A.4.5米  B.6米C.7.2米 D.8米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点, PO的延长线交BC于Q.
(1)求证:△ P O D ≌ △Q O B ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形P B Q D是菱形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,E为BC上一点,DF⊥AE于点F.

小题1:求证:ΔABE∽ΔDFA;
小题2:若AB=6,AD=12,BE=8,求DF的长

查看答案和解析>>

同步练习册答案