精英家教网 > 初中数学 > 题目详情
16.如图,已知直线AB与CD相交于点O,OC平分∠BOE,若∠AOE=80°,则∠AOD的度数为(  )
A.80°B.70°C.60°D.50°

分析 根据邻补角的定义求出∠BOE,再根据角平分线的定义求出∠BOC,然后根据对顶角相等解答.

解答 解:∵∠AOE=80°,
∴∠BOE=180°-∠AOE=180°-80°=100°,
∵OC平分∠BOE,
∴∠BOC=$\frac{1}{2}$∠BOE=$\frac{1}{2}$×100°=50°,
∴∠AOD=∠BOC=50°.
故选D.

点评 本题考查了对顶角、邻补角,角平分线的定义,熟记概念与性质并准确识图理清图中各角度之间的关系是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

6.有两段长度相等的路面铺设任务,分别交给甲、乙两个施工队同时进行施工,甲、乙两个施工队铺设路面的长度y(米)与施工时间x(时)之间的函数关系的部分图象如图所示,下列四种说法:
①施工6小时,甲队比乙队多施工了10米;
②施工4小时,甲、乙两队施工的长度相同;
③施工5小时,甲乙两队共完成路面铺设任务95米;
④如果甲队在施工6小时后继续保持原来施工速度,且又经过5个小时完成铺设任务,乙队在施工50米后,恢复其前30米时的施工速度,结果两队同时完成了铺设任务,
其中正确的是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.下列运算正确的是(  )
A.x•x3=x4B.x3•x2=x6C.a3•a3=2a6D.a6×a2=a4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在关于x、y的二元一次方程组$\left\{\begin{array}{l}{x-y=2m+1①}\\{x+2y=3m②}\end{array}\right.$中,已知x>1,y<2.求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.【提出问题】
(1)如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等边△AMN,连结CN.求证:BM=CN.
【类比探究】
(2)如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其它条件不变,(1)中结论BM=CN还成立吗?请说明理由.
【拓展延伸】
(3)如图3,在等腰△ABC中,BA=BC,AB=6,AC=4,点M是BC上的任意一点(不含端点B、C),连结AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连结CN.试探究BM与CN的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.我们给出如下新定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)如图①,请你在图中画出以格点为顶点,OA、OB为勾股边且对角线相等的勾股四边形OAPB;
(2)如图②,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连结AD、DC.若∠DCB=30°.则四边形ABCD是勾股四边形,为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.阅读与应用.
操作示例
对于边长为a的两个正方形ABCD和EFGH,按图(1)所示的方式摆放,在沿虚线BD,EG剪开后,可以按图中所示的移动方式拼接为图(1)中的四边形BNED.从拼接的过程容易得到结论:①四边形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
实践与探究
对于边长分别为a,b(a>b)的两个正方形ABCD和EFGH,按图(2)所示的方式摆放,连接DE,过点D作DM⊥DE,交AB于点M,过点M作MN⊥DM,过点E作EN⊥DE,MN与EN相交于点N.
①证明四边形MNED是正方形,并用含a,b的代数式表示正方形MNED的面积;
②在图(2)中,将正方形ABCD和正方形EFGH沿虚线剪开后,能够拼接为正方形MNED,请简略说明你的拼接方法(类比图(1),用数字表示对应的图形).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,把△ABC向右平移4格,再向上平移2格得到△A′B′C′.请画出△A′B′C′.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.先化简,再求值:($\frac{x}{x-1}$-$\frac{x}{{x}^{2}-1}$)÷$\frac{{x}^{2}-x}{{x}^{2}-2x+1}$-$\frac{x+2}{x+1}$,其中x=3.

查看答案和解析>>

同步练习册答案