精英家教网 > 初中数学 > 题目详情
(2012•鞍山二模)如果给你一副带有刻度的三角板,请你画出以∠AOB为一内角的菱形.下面一位同学是这样设计的.分别在OA,OB上量取OM=ON,连接MN;取MN的中点P:作射线OP,截取QP=OP,那么四边形MQNO是菱形.
(1)这位同学的设计你认为正确吗?若正确,请对正确做法加以证明;若不正确,请简要说明理由.
(2)请你根据以上信息,创造新的菱形的作法,在备用图上画出图形,并证明其可行性.
分析:(1)首先根据等腰三角形的性质可得PO⊥MN,PN=PM,再有条件OP=PQ可根据对角线互相垂直平分的四边形是菱形判断出四边形MQNO是菱形;
(2)根据对角线垂直且互相平分的四边形是菱形画图即可.
解答:解:(1)正确.理由如下:
∵OM=ON,P是MN的中点,
∴PO⊥MN,PN=PM,
∵OP=PQ,
∴四边形MQNO是菱形;

(2)如图所示:分别在OA,OB上量取OM=ON;连接MN
过点M,N分别作OA,OB的垂线相交于点C;
作射线OC,交MN于点D,截取QD=OD,
那么四边形MQNO是菱形.
点评:此题主要考查了菱形的判定,以及作图,关键是熟练掌握菱形的判定定理:菱形定义:一组邻边相等的平行四边形是菱形(平行四边形+一组邻边相等=菱形);四条边都相等的四边形是菱形.对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•鞍山二模)在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F,连接OE.求证:
(1)BD=BF;
(2)∠EOD=2∠AED.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山二模)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.
(1)求⊙O的直径;
(2)若D是AB延长线上一点,连接CD,当BD长为多少时,CD与⊙O相切?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山二模)函数y=kx+b的图象如图所示,当y<0时,x的取值范围是
x>2
x>2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山二模)如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是
AM
BM
上一点(不与端点重合),如果∠MNP=∠MNQ,求证:MN2=PN•QN.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•鞍山二模)如图,已知直线y=-
3
3
x+6与x轴交于A点,与y轴交于B点,直线l1从与直线l重合的位置开始以每秒1个单位速度向下作匀速平行移动.与此同时,点P从点A出发以每秒2个单位的速度沿直线l1向左上方匀速运动,设它们运动时间为t.
(1)用含t的代数式表示P点的坐标;
(2)过O作OC⊥AB于点C,以点P为圆心,1为半径作圆.
①若⊙P与直线OC相切,求此时t的值;
②已知⊙P与直线OC相交,交点为E、F,当△PEF是等边三角形时,求t的值.

查看答案和解析>>

同步练习册答案