分析 连接BD,作CH⊥BE于H,根据正方形的性质求出正方形CGBH,求出2CH=CE,求出∠CEH=30°,根据等腰三角形性质和三角形的外角性质求出∠AEC=∠CAE=15°,求出∠F的度数即可.
解答 证明:连接BD,作CH⊥BE于H,如图所示:
∵正方形ABCD,
∴∠BGC=90°,GC=BG,
∵AC∥BE,CH⊥BE,
∴∠BHC=∠GCH=∠BGC=90°,
∴四边形CGBH是正方形.
由AC=CE=2GC=2CH,
∴∠CEH=30°,
∴∠CAE=∠CEA=∠AEB=15°,
又∵∠FAE=90°+45°+15°=150°,
∴∠F=180°-150°-15°=15°,
∴∠F=∠AEF,
∴AE=AF.
点评 本题综合考查了等腰三角形的性质,含30度角的直角三角形,三角形的外角性质,正方形的性质和判定等知识点,此题综合性较强,但难度适中.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\frac{1}{3}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2.5cm | B. | 2$\sqrt{2}$cm | C. | 5cm | D. | 2$\sqrt{3}$cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com