精英家教网 > 初中数学 > 题目详情
已知=k,则k的值是           
2或-1.

试题分析:分两种情况:(1)当a+b+c=0时,k=-1;(2)当a+b+c≠0时,可求出k的值.
试题解析:1.当a+b+c=0时,k=-1;
2. 当a+b+c≠0时,a+b=ck,a+c=ak,b+c=ak,把这三个式子相加得:2(a+b+c)=(a+b+c)k
∴k=2
综上所述:k=2或-1.
考点: 比例的性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,AB=4,AD=6,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=

(1)求AE的长;  (2)求ΔCEF的周长和面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.

(1)如图2,当四边形EFGH为正方形时,求CF的长和△FCG的面积;
(2)如图1,设AE=x,△FCG的面积=y,求y与x之间的函数关系式与y的最大值.
(3)当△CG是直角三角形时,求x和y值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在□ABCD中,E是AB的中点,ED和AC相交于点F,过点F作FG∥AB,交AD于点G.

(1)求证:AB=3FG;
(2)若AB:AC=:,求证:

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:
①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为.其中,正确的结论是           
A.①②④B.①③⑤C.②③④D.①④⑤

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,AD为等边△ABC边BC上的高,AB=4,AE=1,P为高AD上任意一点,则EP+BP的最小值为(  )。
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,AC=4,CE=6,BD=3,则BF=(  )

A.7  B.7.5  C.8  D.8.5

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在比例尺是1∶8 000的南京市城区地图上,太平南路的长度约为25 cm,它的实际长度约为(  )
A.320 cmB.320 m
C.2 000 cmD.2 000 m

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,在梯形ABCD中,AD∥BC,AD=2,AB=3,BC=6,沿AE翻折梯形ABCD使点B落AD的延长线上,记为点B’,连结B’E交CD于点F,则的值为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案