精英家教网 > 初中数学 > 题目详情
(2009•茂名)已知:如图,直径为OA的⊙M与x轴交于点O、A,点B、C把分为三等份,连接MC并延长交y轴于点D(0,3)
(1)求证:△OMD≌△BAO;
(2)若直线l:y=kx+b把⊙M的面积分为二等份,求证:k+b=0.

【答案】分析:题目涉及的范围包括三角形,圆形和直线等知识,范围比较广,要细心分析,认真领会题目意思.
解答:证明:(1)连接BM,∵B、C把三等分,∴∠1=∠5=60°,1分
又∵OM=BM,∴∠2=∠5=30°,2分
又∵OA为⊙M直径,∴∠ABO=90°,∴AB=OA=OM,∠3=60°,3分
∴∠1=∠3,∠DOM=∠ABO=90°,4分
在△OMD和△BAO中,5分
∴△OMD≌△BAO(ASA).6分

(2)若直线l把⊙M的面积分为二等份,
则直线l必过圆心M,7分
∵D(0,3),∠1=60°,

,8分
把M(,0)代入y=kx+b得:k+b=0.
点评:这种题目是在中考大题经常出现的综合性题,平时要多做类似的题目,练习多了也不算难.
练习册系列答案
相关习题

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2009•茂名)已知:如图,直线l:y=x+b,经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷27(沈瑜瑛)(解析版) 题型:解答题

(2009•茂名)已知:如图,直线l:y=x+b,经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.

查看答案和解析>>

科目:初中数学 来源:2010年浙江省杭州市采荷中学中考数学模拟试卷(5月份)(解析版) 题型:解答题

(2009•茂名)已知:如图,直线l:y=x+b,经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.

查看答案和解析>>

科目:初中数学 来源:2010年贵州省贵阳市中考适应性考试数学试卷(解析版) 题型:解答题

(2009•茂名)已知:如图,直线l:y=x+b,经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.

查看答案和解析>>

科目:初中数学 来源:2009年广东省茂名市中考数学试卷(解析版) 题型:解答题

(2009•茂名)已知:如图,直线l:y=x+b,经过点M(0,),一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0),设x1=d(0<d<1).
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,请你求出相应的d的值.

查看答案和解析>>

同步练习册答案