精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2…,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有
②③④
②③④

①四边形A2B2C2D2是矩形;         ②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长
a+b
4

④四边形AnBnCnDn的面积是
ab
2n+1
分析:首先根据题意,找出变化后的四边形的边长与四边形ABCD中各边长的长度关系规律,然后对以下选项作出分析与判断:
①根据矩形的判定与性质作出判断;
②根据菱形的判定与性质作出判断;
③由四边形的周长公式:周长=边长之和,来计算四边形A5B5C5D5的周长;
④根据四边形AnBnCnDn的面积与四边形ABCD的面积间的数量关系来求其面积.
解答:解:①连接A1C1,B1D1
∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1,A1B1∥C1D1
∴四边形A1B1C1D1是平行四边形;
∵AC⊥BD,
∴四边形是A1B1C1D1矩形,
∴B1D1=A1C1
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形; 
故本选项错误;

②由①知,四边形A2B2C2D2是菱形; 
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故本选项正确;

③根据中位线的性质易知,A5B5=
1
2
A3B3=
1
2
×
1
2
A1B1=
1
2
×
1
2
×
1
2
AC,B5C5=
1
2
B3C3=
1
2
×
1
2
B1C1=
1
2
×
1
2
×
1
2
BD,
∴四边形A5B5C5D5的周长是2×
1
8
(a+b)=
a+b
4

故本选项正确;

④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是
ab
2n+1

故本选项正确;
综上所述,②③④正确.
故答案为②③④.
点评:本题主要考查了菱形的判定与性质、矩形的判定与性质及三角形的中位线定理(三角形的中位线平行于第三边且等于第三边的一半).解答此题时,需理清菱形、矩形与平行四边形的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案