精英家教网 > 初中数学 > 题目详情
已知,△ABC中,AB=AC=2,BC=2
2
,∠A=90°.取一块含45°角的直角三角尺,将直角顶点放在斜边BC边的中点O处,一条直角边过A点(如图1).三角尺绕O点顺时针方向旋转,使90°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图2).设BE=x,CF=y.
(1)探究:在图2中,线段AE与CF有怎样的大小关系?证明你的结论;
(2)求在上述旋转过程中y与x的函数关系式,并写出x的取值范围;
(3)若将直角三角尺45°角的顶点放在斜边BC边的中点O处,一条直角边过A点(如图3).三角尺绕O点顺时针方向旋转,使45°角的两边与Rt△ABC的两边AB,AC分别相交于点E,F(如图4).在三角尺绕O点旋转的过程中,△OEF是否能成为等腰三角形?若能,直接写出△OEF为等腰三角形时x的值;若不能,请说明理由.
分析:(1)首先得出,∠EAO=∠C=45°,AO=OC,∠EOA=∠FOC,进而得出△EOA≌△FOC,即可得出答案;
(2)利用AE=CF,得出BE+CF=BE+AE=AB=2,即x+y=2,即可得出答案;
(3)利用OE=EF时,点E为AB中点,点F与点A重合,当OE=OF时,BE=BO=CO=CF=
2
,当EF=OF时,点E与点A重合,点F为AC中点,进而得出答案.
解答:解:(1)AE=CF.
理由:连接AO.如图2,
∵AB=AC,点O为BC的中点,∠BAC=90°,
∴∠AOC=90°,∠EAO=∠C=45°,AO=OC.
∵∠EOF=90°,∠EOA+∠AOF=90°,∠COF+∠AOF=90°,
∴∠EOA=∠FOC,
在△EOA和△FOC中,
∠EOA=∠COF
AO=CO
∠OAE=∠C

∴△EOA≌△FOC(ASA),
∴AE=CF.

(2)∵AE=CF,∴BE+CF=BE+AE=AB=2,即x+y=2,
∴y与x的函数关系式:y=2-x.
x的取值范围是:0≤x≤2.

(3)△OEF能构成等腰三角形.
当OE=EF时,如图3,点E为AB中点,点F与点A重合,BE=AE=1,即x=1,
当OE=OF时,如图4,BE=BO=CO=CF=
2
,即x=
2

当EF=OF时,如图5,点E与点A重合,点F为AC中点,即x=2,
综上所述:△OEF为等腰三角形时x的值为1或
2
或2.
点评:此题主要考查了全等三角形的判定以及等腰直角三角形的性质,利用分类讨论得出是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知Rt△ABC中,∠ACB=90°,BC=5,tan∠A=
3
4
,现将△ABC绕着点C逆时针旋转α(45°<α<135°)得到△DCE,设直线DE与直线AB相交于点P,连接CP.
精英家教网
(1)当CD⊥AB时(如图1),求证:PC平分∠EPA;
(2)当点P在边AB上时(如图2),求证:PE+PB=6;
(3)在△ABC旋转过程中,连接BE,当△BCE的面积为
25
4
3
时,求∠BPE的度数及PB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,已知在△ABC中,AB=AC,∠BAD=β,且AD=AE,求∠EDC.(用β表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

8、如图,已知在△ABC中,AD垂直平分BC,AC=EC,点B、D、C、E在同一直线上,则下列结论:①AB=AC;②∠CAE=∠E;③AB+BD=DE;④∠BAC=∠ACB.正确的个数有(  )个.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知在△ABC中,有一个角为60°,S△ABC=10
3
,周长为20,则三边长分别为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知在△ABC中,点D、E分别是AB、AC上的点,以AE为直径的⊙O与过B点的⊙P精英家教网外切于点D,若AC和BC边的长是关于x的方程x2-(AB+4)x+4AB+8=0的两根,且25BC•sinA=9AB,
(1)求△ABC三边的长;
(2)求证:BC是⊙P的切线;
(3)若⊙O的半径为3,求⊙P的半径.

查看答案和解析>>

同步练习册答案