A. | BD<2 | B. | BD=2 | ||
C. | BD>2 | D. | 以上情况均有可能 |
分析 据∠DBE=∠ABE+∠CBD,且△BED的内角和为180°,得出得出∠AED+∠CDE=180°,判定AE∥CD,由AE=CD,推出四边形AEDC为平行四边形推出DE=AC.则BC=CD=DE=1,推出BD<BC+CD=2.
解答 证明:∵AE=AB,
∴∠ABE=∠AEB,同理∠CBD=∠CDB
∵∠ABC=2∠DBE,
∴∠ABE+∠CBD=∠DBE,
∵∠ABE=∠AEB,∠CBD=∠CDB,
∴∠AEB+∠CDB=∠DBE,
∴∠AED+∠CDE=180°,
∴AE∥CD,
∵AE=CD,
∴四边形AEDC为平行四边形.
∴DE=AC=AB=BC.
∴△ABC是等边三角形,
∴BC=CD=1,
在△BCD中,∵BD<BC+CD,
∴BD<2.
故选A.
点评 本题主要考查等腰三角形的性质:等腰三角形的底角相等,以及等边三角形的判定定理.解题时注意,同旁内角互补,两直线平行.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 2 | B. | -$\sqrt{2}$ | C. | -1 | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
白纸张数 | 1 | 2 | 3 | 4 | 5 | … |
纸条长度 | 40 | 75 | 110 | 145 | 180 | … |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com