精英家教网 > 初中数学 > 题目详情

【题目】如图,坐标原点O为矩形ABCD的对称中心,顶点A的坐标为(1,t),AB∥x轴,矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心,点A′,B′分别是点A,B的对应点,=k.已知关于x,y的二元一次方程(m,n是实数)无解,在以m,n为坐标记为(m,n)的所有的点中,若有且只有一个点落在矩形A′B′C′D′的边上,则kt的值等于(  )

A.
B.1
C.
D.

【答案】B
【解析】 ∵ 矩形A′B′C′D′与矩形ABCD是位似图形,=k,顶点A的坐标为(1,t), ∴ 点A′的坐标为(k,kt),
∵ 矩形A′B′C′D′与矩形ABCD是位似图形,点O为位似中心, ∴ 矩形A′B′C′D′也关于点O成中心对称.
∵关于x,y的二元一次方程(m,n是实数)无解,∴ mn=3,且n≠1,即n=(m≠3),
∵以m,n为坐标(记为(m,n)的所有的点中,有且只有一个点落在矩形A′B′C′D′的边上,∴反比例函数n=的图象只经过点A′或C′,
∵矩形A′B′C′D′关于点O成中心对称,反比例函数n=的图象关于点O成中心对称,∴反比例函数n=的图象经过C′点,
如果反比例函数n=的图象不经过C′点,则以m,n为坐标(记为(m,n)的所有的点中,如果有点落在矩形A′B′C′D′的边上,
则至少有两个点落在矩形A′B′C′D′的边上,∴A′点的坐标是(3,1),∴kt=1.故答案选:B
首先求出点A′的坐标为(k,kt),再根据关于x,y的二元一次方程(m,n是实数)无解,可得mn=3,且n≠1;然后根据以m,n为坐标(记为(m,n)的所有的点中,有且只有一个点落在矩形A′B′C′D′的边上,可得反比例函数n=的图象只经过点A′或C′;最后判断出反比例函数n=的图象经过C′点,则A′点的坐标是(3,1),所以kt=1,据此解答即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
(1)求从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是 ,求从袋中取出黑球的个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.
根据“边角边”,可证△CEH≌   , 得EH=ED.
在Rt△HBE中,由定理,可得BH2+EB2=EH2 , 由BH=AD,可得AD、DE、EB之间的等量关系是     .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴(  )
A.只能是x=﹣1
B.可能是y轴
C.可能在y轴右侧且在直线x=2的左侧
D.可能在y轴左侧且在直线x=﹣2的右侧

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图1,纸片ABCD中,AD=5,SABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D。

(1)如图1,纸片ABCD中,AD=5,SABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为 ( )
A.平行四边形
B.菱形
C.矩形
D.正方形
(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.
①求证:四边形AFF′D是菱形.
②求四边形AFF′D的两条对角线的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)计算:﹣(﹣π)0﹣2sin60°
(2)化简:(1+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M(﹣3,m)是一次函数y=x+1与反比例函数y=(k≠0)的图象的一个交点.

(1)求反比例函数表达式
(2)点P是x轴正半轴上的一个动点,设OP=a(a≠2),过点P作垂直于x轴的直线,分别交一次函数,反比例函数的图象于点A,B,过OP的中点Q作x轴的垂线,交反比例函数的图象于点C,△ABC′与△ABC关于直线AB对称.
①当a=4时,求△ABC′的面积;
②当a的值为 3 时,△AMC与△AMC′的面积相等。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):

(1)在这次抽样调查中,一共抽查了 名学生
(2)请把图①中的条形统计图补充完整。
(3)求出D类的百分数,即可求出圆心角的度数。
(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是(  )

A.1对
B.2对
C.3对
D.4对

查看答案和解析>>

同步练习册答案