精英家教网 > 初中数学 > 题目详情

已知:如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M. 求证:AM=(AB+AC) 。

 

【答案】

证明:取AD、CD的中点为E,F点,连接EF,FM,

∴EF是三角形ACD的中位线,

∴EF∥AC,EF=AC,

∠DEF=∠CAD,

∵CM⊥AD,CF=DF

∴DF=MF,∠FDM=∠FMD=∠ADB,

∵AB=AD,

∴∠B=∠ADB=∠AMF,

∴A、B、M、F四点共圆,

∴∠BAM=∠BFM,

∵AD平分∠BAC,

∴∠BAM=∠CAM=∠FEM,

∠FEM+∠EFD=∠EFD+∠BAM=∠EFD+∠BFM=∠EFM=∠FDM=∠FMD,

∴∠EFM=∠EMF,

∴EF=EM=AC,

∵AE=AD=AB,

∴AM=AE+EM=(AB+AC).

即AM=(AB+AC).

【解析】取AD、CD的中点为E,F点,连接EF,FM,求出EF∥AC,EF= AC,根据等腰三角形性质和三角形的内角和定理求出∠BAM=∠BFM,推出∠EFM=∠EMF,推出EF=EM,根据EF=EM=AC和AE=AD=AB求出即可.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD为Rt△ABC斜边BC上的高,点E为DA延长线上一点,连接BE,过点C作CF⊥BE于点F,交AB、AD于M、N两点.
(1)若线段AM、AN的长是关于x的一元二次方程x2-2mx+n2-mn+
5
4
m2=0的两个实数根,求证:AM=AN;
(2)若AN=
15
8
,DN=
9
8
,求DE的长;
(3)若在(1)的条件下,S△AMN:S△ABE=9:64,且线段BF与EF的长是关于y的一元二次方程5y2-16ky+10k2+5=0的两个实数根,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,如图,AD为△ABC的角平分线,∠C=2∠B.求证:AB=AC+CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M.求证:AM=
12
(AB+AC).

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图:AD为△ABC中BC边上的中线,CE∥AB交AD的延长线于E.求证:AB=CE.

查看答案和解析>>

同步练习册答案