已知:如图,AD为△ABC的内角平分线,且AD=AB,CM⊥AD于M. 求证:AM=(AB+AC) 。
证明:取AD、CD的中点为E,F点,连接EF,FM,
∴EF是三角形ACD的中位线,
∴EF∥AC,EF=AC,
∠DEF=∠CAD,
∵CM⊥AD,CF=DF
∴DF=MF,∠FDM=∠FMD=∠ADB,
∵AB=AD,
∴∠B=∠ADB=∠AMF,
∴A、B、M、F四点共圆,
∴∠BAM=∠BFM,
∵AD平分∠BAC,
∴∠BAM=∠CAM=∠FEM,
∠FEM+∠EFD=∠EFD+∠BAM=∠EFD+∠BFM=∠EFM=∠FDM=∠FMD,
∴∠EFM=∠EMF,
∴EF=EM=AC,
∵AE=AD=AB,
∴AM=AE+EM=(AB+AC).
即AM=(AB+AC).
【解析】取AD、CD的中点为E,F点,连接EF,FM,求出EF∥AC,EF= AC,根据等腰三角形性质和三角形的内角和定理求出∠BAM=∠BFM,推出∠EFM=∠EMF,推出EF=EM,根据EF=EM=AC和AE=AD=AB求出即可.
科目:初中数学 来源: 题型:
5 |
4 |
15 |
8 |
9 |
8 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com