精英家教网 > 初中数学 > 题目详情
阅读以下材料,解决问题:
已知:A=a2,B=2a-1,试比较A、B的大小.
分析:要比较A、B的大小,可以用作差法.如果A-B>0,那么A>B;如果A-B<0,那么A<B;如果A-B=0,那么A=B.
解:A-B=a2-(2a-1)=a2-2a+1=(a-1)2
(1)当a-1=0即a=1时,A-B=0,∴A=B;
(2)当a-1≠0即a≠0时,A-B>0,∴A>B.
运用上述材料,解答问题:已知:A=x2+10x+1,B=3(2x-x2),试比较A、B的大小.
【答案】分析:结合已知,运用作差法,再运用整式的加减计算即可比较A、B的大小.
解答:解:A-B=x2+10x+1-3(2x-x2)=x2+10x+1-6x+3x2=4x2+4x+1=4(x+2
(1)当x=-时,A-B=0,∴A=B;
(2)当x≠-时,A-B>0,∴A>B.
点评:本题主要考查了整式的加减,解题关键是读懂题意.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读以下的材料:
如果两个正数a,b,即a>0,b>0,则有下面的不等式:
a+b
2
ab
当且仅当a=b时取到等号
我们把
a+b
2
叫做正数a,b的算术平均数,把
ab
叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:
例:已知x>0,求函数y=x+
4
x
的最小值.
解:另a=x,b=
4
x
,则有a+b≥2
ab
,得y=x+
4
x
≥2
x•
4
x
=4
,当且仅当x=
4
x
时,即x=2时,函数有最小值,最小值为2.
根据上面回答下列问题
①已知x>0,则当x=
 
时,函数y=2x+
3
x
取到最小值,最小值为
 

②用篱笆围一个面积为100m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆是多少?
③已知x>0,则自变量x取何值时,函数y=
x
x2-2x+9
取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源:模拟题 题型:解答题

阅读以下的材料: 
如果两个正数a,b,即a>0,b>0,有下面的不等式:
当且仅当a=b时取到等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
例:已知x>0,求函数的最小值。
解:令,则有,得,当且仅当时,即时x=2,函数有最小值,最小值为2。
根据上面回答下列问题
① 已知x>0,则当x=______时,函数取到最小值,最小值为______;
② 用篱笆围一个面积为100cm2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆周长是多少;
③已知x>0,则自变量取何值时,函数取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源:河北省模拟题 题型:解答题

阅读以下的材料:
如果两个正数a,b,即a>0,b>0,有下面的不等式:
当且仅当a=b时取到等号
我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
例:已知x>0,求函数的最小值。
解:令a=x,b=,则有,得,当且仅当时,即x=2时,函数有最小值,最小值为2。
根据上面回答下列问题:
①已知x>0,则当x=____时,函数取到最小值,最小值为____;
②用篱笆围一个面积为100m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆周长是多少;
③已知x>0,则自变量x取何值时,函数取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源:河北省模拟题 题型:解答题

阅读以下的材料:
如果两个正数a,b,即a>0,b>0,有下面的不等式:
当且仅当a=b时取到等号,我们把叫做正数的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:
例:已知x>0,求函数的最小值。
解:令a=x,,则有,得,当且仅当时,即x=2时,函数有最小值,最小值为2。
根据上面回答下列问题:
①已知x>0,则当x=______时,函数取到最小值,最小值为______;
②用篱笆围一个面积为100m2的矩形花园,问这个矩形的长、宽各为多少时,所用的篱笆最短,最短的篱笆周长是多少;
③已知x>0,则自变量x取何值时,函数取到最大值,最大值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读以下的材料:   

 如果两个正数,即,有下面的不等式:

          当且仅当时取到等号

我们把叫做正数的算术平均数,把叫做正数的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数。它在数学中有广泛的应用,是解决最值问题的有力工具。下面举一例子:

例:已知,求函数的最小值。

解:令,则有,得,当且仅当时,即时,函数有最小值,最小值为

根据上面回答下列问题

①     已知,则当         时,函数取到最小值,最小值

          

②     用篱笆围一个面积为的矩形花园,问这个矩形的长、宽各为多少时,所

用的篱笆最短,最短的篱笆周长是多少;

③. 已知,则自变量取何值时,函数取到最大值,最大值为多少?

查看答案和解析>>

同步练习册答案