【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标.
【答案】
(1)
解:设抛物线的解析式为y=ax2+bx+c,
则有: ,
解得: ,
所以抛物线的解析式为y=x2﹣2x﹣3
(2)
解:令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以B点坐标为(3,0).
设直线BC的解析式为y=kx+b,
则 ,
解得 ,
所以直线解析式是y=x﹣3.
当x=1时,y=﹣2.
所以M点的坐标为(1,﹣2)
【解析】(1)利用待定系数设抛物线的解析式为y=ax2+bx+c,代入求出即可;(2)根据令x2﹣2x﹣3=0,解得x1=﹣1,x2=3,所以B点坐标为(3,0),进而求出直线BC的解析式,即可得出M点的坐标.
【考点精析】本题主要考查了二次函数的图象和二次函数的性质的相关知识点,需要掌握二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,路灯下一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF,在M处有一颗大树,它的影子是MN.
(1)指定路灯的位置(用点P表示);
(2)在图中画出表示大树高的线段;
(3)若小明的眼睛近似地看成是点D,试画图分析小明能否看见大树.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形的边长为,点在边上,且,将沿对折至,延长交边于点,连接、,则下列结论:①≌;②;③∥;④与的面积相等;⑤,其中正确的个数是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=BC,成立的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知第一象限内的点A在反比例函数y= 的图象上,第二象限内的点B在反比例函数y= 的图象上,且OA⊥OB,cosA= ,则k的值为( )
A.﹣3
B.﹣4
C.﹣
D.﹣2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转后,得到△P′AB.
(1)求点P与点P′之间的距离;
(2)求∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.
在图中画出与关于直线l成轴对称的;
三角形ABC的面积为______;
以AC为边作与全等的三角形,则可作出______个三角形与全等;
在直线l上找一点P,使的长最短.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com