分析 过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=$\frac{1}{2}$AC即可.
解答 解:过P作PF∥BC交AC于F.
∵PF∥BC,△ABC是等边三角形,
∴∠PFD=∠QCD,△APF是等边三角形,
∴AP=PF=AF,
∵PE⊥AC,
∴AE=EF,
∵AP=PF,AP=CQ,
∴PF=CQ.
∵在△PFD和△QCD中,
$\left\{\begin{array}{l}{∠PFD=∠QCD}\\{∠PDF=∠QDC}\\{PF=CQ}\end{array}\right.$,
∴△PFD≌△QCD(AAS),
∴FD=CD,
∵AE=EF,
∴EF+FD=AE+CD,
∴AE+CD=DE=$\frac{1}{2}$AC,
∵AC=4,
∴DE=$\frac{1}{2}×4=2$.
故答案为:2.
点评 本题考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
星 期 | 一 | 二 | 三 | 四 | 五 |
每股涨跌 | -0.29 | +0.06 | -0.12 | +0.24 | +0.06 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com