精英家教网 > 初中数学 > 题目详情

【题目】如图所示,⊙O的内接△ABC中,∠BAC=45°,∠ABC=15°,AD∥OC并交BC的延长线于D点,OC交AB于E点.

(1)求∠D的度数;
(2)求证:AC2=ADCE.

【答案】
(1)解:连接OA,如图所示:

∵圆周角∠ABC与圆心角∠AOC所对的弧都为

∴∠AOC=2∠ABC,又∠ABC=15°,

∴∠AOC=30°,

又OA=OC,∴∠OAC=∠OCA= =75°,

又∠BAC=45°,∠ABC=15°,

∴∠ACB=120°,

∴∠OCB=∠ACB﹣∠ACO=120°﹣75°=45°,

又OC∥AD,

∴∠D=∠OCB=45°


(2)证明:∵∠ABC=15°,∠OCB=45°,

∴∠AEC=60°,

又∠ACB=120°∴∠ACD=60°,

∴∠AEC=∠ACD=60°,

∵∠D=45°,∠ACD=60°,

∴∠CAD=75°,又∠OCA=75°,

∴∠CAD=∠OCA=75°,

∴△ACE∽△DAC,

= ,即AC2=ADCE


【解析】(1)连接OA,由圆周角∠ABC与圆心角∠AOC所对的弧为同一条弧,根据同弧所对的圆心角等于所对圆周角的2倍,由∠ABC的度数求出∠AOC的度数,再由OA=OC,根据等边对等角,由顶角∠AOC的度数,利用三角形的内角和定理求出底角∠ACO的度数,再由∠BAC及∠ABC的度数,求出∠ACB的度数,由∠ACB﹣∠ACO求出∠BCE的度数,由OC与AD平行,根据两直线平行同位角相等可得∠D=∠BCE,可得出∠D的度数;(2)由∠ACB的度数,利用邻补角定义求出∠ACD的度数,再由∠AEC为三角形BEC的外角,利用外角性质得到∠AEC=∠ABC+∠BCE,可得出∠AEC的度数,进而得到∠AEC=∠ACD,在三角形ACD中,由∠ACD及∠D的度数,求出∠CAD的度数,可得∠CAD=∠ACE,利用两对对应角相等的三角形相似可得三角形AEC与三角形DCA相似,根据相似三角形的对应边成比例可得证.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是(  )

A.(2,5)
B.(5,2)
C.(2,﹣5)
D.(5,﹣2)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BFCE在直线lFC之间不能直接测量,点ADl异侧,测得AB=DEAC=DFBF=EC.

1求证:ABC≌△DEF

2指出图中所有平行的线段,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:点D是△ABC所在平面内一点,连接ADCD

(1)如图1,若∠A=28°,∠B=72°,∠C=11°,求∠ADC

(2)如图2,若存在一点P,使得PB平分∠ABC,同时PD平分∠ADC,探究∠A,∠P,∠C的关系并证明;

(3)如图3,在 (2)的条件下,将点D移至∠ABC的外部,其它条件不变,探究∠A,∠P,∠C的关系并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个y关于x的函数同时满足两个条件:①图象过(2,1)点;②当x>0时,y随x的增大而减小.这个函数解析式为 . (写出一个即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,联结AD,以AD为一边且在AD的右侧作正方形ADEF.

(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图2,将△ABD绕A点逆时针旋转90°,所得到的三角形为 , 线段CF,BD所在直线的位置关系为 , 线段CF,BD的数量关系为

(2)②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;

(3)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C,F不重合),并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,

(1)①画出△ABC关于x轴对称的△A1B1C1
②画出△ABC绕原点O旋转180°后的△A2B2C2 , 并写出A2、B2、C2的坐标
(2)假设每个正方形网格的边长为1,求△A1B1C1的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2+ax+a﹣2=0
(1)若该方程的一个根为1,求a的值及该方程的另一根;
(2)求证:不论a取何实数,该方程都有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为菱形ABCD对角线的交点,DE∥AC,CE∥BD.

(1)试判断四边形OCED的形状,并说明理由;
(2)若AC=6,BD=8,求线段OE的长.

查看答案和解析>>

同步练习册答案